These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 24990707)

  • 1. Programmability of nanowire networks.
    Bellew AT; Bell AP; McCarthy EK; Fairfield JA; Boland JJ
    Nanoscale; 2014 Aug; 6(16):9632-9. PubMed ID: 24990707
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Co-percolation to tune conductive behaviour in dynamical metallic nanowire networks.
    Fairfield JA; Rocha CG; O'Callaghan C; Ferreira MS; Boland JJ
    Nanoscale; 2016 Nov; 8(43):18516-18523. PubMed ID: 27782246
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effective electrode length enhances electrical activation of nanowire networks: experiment and simulation.
    Fairfield JA; Ritter C; Bellew AT; McCarthy EK; Ferreira MS; Boland JJ
    ACS Nano; 2014 Sep; 8(9):9542-9. PubMed ID: 25153920
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resistance of Single Ag Nanowire Junctions and Their Role in the Conductivity of Nanowire Networks.
    Bellew AT; Manning HG; Gomes da Rocha C; Ferreira MS; Boland JJ
    ACS Nano; 2015 Nov; 9(11):11422-9. PubMed ID: 26448205
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resistive-switching crossbar memory based on Ni-NiO core-shell nanowires.
    Cagli C; Nardi F; Harteneck B; Tan Z; Zhang Y; Ielmini D
    Small; 2011 Oct; 7(20):2899-905. PubMed ID: 21874659
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Manipulating connectivity and electrical conductivity in metallic nanowire networks.
    Nirmalraj PN; Bellew AT; Bell AP; Fairfield JA; McCarthy EK; O'Kelly C; Pereira LF; Sorel S; Morosan D; Coleman JN; Ferreira MS; Boland JJ
    Nano Lett; 2012 Nov; 12(11):5966-71. PubMed ID: 23062152
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxide nanowire networks and their electronic and optoelectronic characteristics.
    Mathews N; Varghese B; Sun C; Thavasi V; Andreasson BP; Sow CH; Ramakrishna S; Mhaisalkar SG
    Nanoscale; 2010 Oct; 2(10):1984-98. PubMed ID: 20835439
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Emergent dynamics of neuromorphic nanowire networks.
    Diaz-Alvarez A; Higuchi R; Sanz-Leon P; Marcus I; Shingaya Y; Stieg AZ; Gimzewski JK; Kuncic Z; Nakayama T
    Sci Rep; 2019 Oct; 9(1):14920. PubMed ID: 31624325
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nano-soldering of magnetically aligned three-dimensional nanowire networks.
    Gao F; Gu Z
    Nanotechnology; 2010 Mar; 21(11):115604. PubMed ID: 20179331
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sustained Resistive Switching in a Single Cu:7,7,8,8-tetracyanoquinodimethane Nanowire: A Promising Material for Resistive Random Access Memory.
    Basori R; Kumar M; Raychaudhuri AK
    Sci Rep; 2016 Jun; 6():26764. PubMed ID: 27245099
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Memristive switching of single-component metallic nanowires.
    Johnson SL; Sundararajan A; Hunley DP; Strachan DR
    Nanotechnology; 2010 Mar; 21(12):125204. PubMed ID: 20203360
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metallic nanowire networks: effects of thermal annealing on electrical resistance.
    Langley DP; Lagrange M; Giusti G; Jiménez C; Bréchet Y; Nguyen ND; Bellet D
    Nanoscale; 2014 Nov; 6(22):13535-43. PubMed ID: 25267592
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Noble metal nanowires: from plasmon waveguides to passive and active devices.
    Lal S; Hafner JH; Halas NJ; Link S; Nordlander P
    Acc Chem Res; 2012 Nov; 45(11):1887-95. PubMed ID: 23102053
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Observation of Resistive Switching Behavior in Crossbar Core-Shell Ni/NiO Nanowires Memristor.
    Ting YH; Chen JY; Huang CW; Huang TK; Hsieh CY; Wu WW
    Small; 2018 Feb; 14(6):. PubMed ID: 29205791
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Facile fabrication of hierarchical ZnCo2O4/NiO core/shell nanowire arrays with improved lithium-ion battery performance.
    Sun Z; Ai W; Liu J; Qi X; Wang Y; Zhu J; Zhang H; Yu T
    Nanoscale; 2014 Jun; 6(12):6563-8. PubMed ID: 24796419
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The dependence of the optoelectrical properties of silver nanowire networks on nanowire length and diameter.
    Sorel S; Lyons PE; De S; Dickerson JC; Coleman JN
    Nanotechnology; 2012 May; 23(18):185201. PubMed ID: 22498640
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bipolar resistive switching of single gold-in-Ga2O3 nanowire.
    Hsu CW; Chou LJ
    Nano Lett; 2012 Aug; 12(8):4247-53. PubMed ID: 22823742
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonpolar Resistive Switching in Ag@TiO
    Manning HG; Biswas S; Holmes JD; Boland JJ
    ACS Appl Mater Interfaces; 2017 Nov; 9(44):38959-38966. PubMed ID: 29027461
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photonic nanowires: from subwavelength waveguides to optical sensors.
    Guo X; Ying Y; Tong L
    Acc Chem Res; 2014 Feb; 47(2):656-66. PubMed ID: 24377258
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrical conductivity of random metallic nanowire networks: an analytical consideration along with computer simulation.
    Tarasevich YY; Vodolazskaya IV; Eserkepov AV
    Phys Chem Chem Phys; 2022 May; 24(19):11812-11819. PubMed ID: 35507328
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.