These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 24990707)

  • 21. Electrical conductivity of random metallic nanowire networks: an analytical consideration along with computer simulation.
    Tarasevich YY; Vodolazskaya IV; Eserkepov AV
    Phys Chem Chem Phys; 2022 May; 24(19):11812-11819. PubMed ID: 35507328
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The effect of nanowire length and diameter on the properties of transparent, conducting nanowire films.
    Bergin SM; Chen YH; Rathmell AR; Charbonneau P; Li ZY; Wiley BJ
    Nanoscale; 2012 Mar; 4(6):1996-2004. PubMed ID: 22349106
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Charge transport in nanoscale junctions.
    Albrecht T; Kornyshev A; Bjørnholm T
    J Phys Condens Matter; 2008 Sep; 20(37):370301. PubMed ID: 21694407
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Memristive Switching in Bi(1-x)Sb(x) Nanowires.
    Han N; Park MU; Yoo KH
    ACS Appl Mater Interfaces; 2016 Apr; 8(14):9224-30. PubMed ID: 27042861
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Topological Properties of Neuromorphic Nanowire Networks.
    Loeffler A; Zhu R; Hochstetter J; Li M; Fu K; Diaz-Alvarez A; Nakayama T; Shine JM; Kuncic Z
    Front Neurosci; 2020; 14():184. PubMed ID: 32210754
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Resistive-switching memory effects of NiO nanowire/metal junctions.
    Oka K; Yanagida T; Nagashima K; Kawai T; Kim JS; Park BH
    J Am Chem Soc; 2010 May; 132(19):6634-5. PubMed ID: 20423079
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Emergence of winner-takes-all connectivity paths in random nanowire networks.
    Manning HG; Niosi F; da Rocha CG; Bellew AT; O'Callaghan C; Biswas S; Flowers PF; Wiley BJ; Holmes JD; Ferreira MS; Boland JJ
    Nat Commun; 2018 Aug; 9(1):3219. PubMed ID: 30104665
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A single nanoscale junction with programmable multilevel memory.
    O'Kelly C; Fairfield JA; Boland JJ
    ACS Nano; 2014 Nov; 8(11):11724-9. PubMed ID: 25323650
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Quantitative study of the photothermal properties of metallic nanowire networks.
    Bell AP; Fairfield JA; McCarthy EK; Mills S; Boland JJ; Baffou G; McCloskey D
    ACS Nano; 2015 May; 9(5):5551-8. PubMed ID: 25938797
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Site-specific fabrication of nanoscale heterostructures: local chemical modification of GaN nanowires using electrochemical dip-pen nanolithography.
    Maynor BW; Li J; Lu C; Liu J
    J Am Chem Soc; 2004 May; 126(20):6409-13. PubMed ID: 15149238
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Growth of nanowire superlattice structures for nanoscale photonics and electronics.
    Gudiksen MS; Lauhon LJ; Wang J; Smith DC; Lieber CM
    Nature; 2002 Feb; 415(6872):617-20. PubMed ID: 11832939
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evolution and modulation of Ag filament dynamics within memristive devices based on necklace-like Ag@TiO
    Weng Z; Zhao Z; Jiang H; Fang Y; Lei W; Liu C
    Nanotechnology; 2022 Jan; 33(13):. PubMed ID: 34915460
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Non-ohmic behavior and resistive switching of Au cluster-assembled films beyond the percolation threshold.
    Mirigliano M; Borghi F; Podestà A; Antidormi A; Colombo L; Milani P
    Nanoscale Adv; 2019 Aug; 1(8):3119-3130. PubMed ID: 36133584
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Threshold Switching Induced by Controllable Fragmentation in Silver Nanowire Networks.
    Wan T; Pan Y; Du H; Qu B; Yi J; Chu D
    ACS Appl Mater Interfaces; 2018 Jan; 10(3):2716-2724. PubMed ID: 29282972
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nanoscale Joule heating and electromigration enhanced ripening of silver nanowire contacts.
    Song TB; Chen Y; Chung CH; Yang YM; Bob B; Duan HS; Li G; Tu KN; Huang Y; Yang Y
    ACS Nano; 2014 Mar; 8(3):2804-11. PubMed ID: 24517263
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ultimate conductivity performance in metallic nanowire networks.
    Gomes da Rocha C; Manning HG; O'Callaghan C; Ritter C; Bellew AT; Boland JJ; Ferreira MS
    Nanoscale; 2015 Aug; 7(30):13011-6. PubMed ID: 26169222
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Metal-insulator transition in Au-NiO-Ni dual Schottky nanojunctions.
    Sun JL; Zhao X; Zhu JL
    Nanotechnology; 2009 Nov; 20(45):455203. PubMed ID: 19834250
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices.
    Duan X; Huang Y; Cui Y; Wang J; Lieber CM
    Nature; 2001 Jan; 409(6816):66-9. PubMed ID: 11343112
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Integrating simulations and experiments to predict sheet resistance and optical transmittance in nanowire films for transparent conductors.
    Mutiso RM; Sherrott MC; Rathmell AR; Wiley BJ; Winey KI
    ACS Nano; 2013 Sep; 7(9):7654-63. PubMed ID: 23930701
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electrical transport and photovoltaic effects of core-shell CuO/C60 nanowire heterostructure.
    Bao Q; Li CM; Liao L; Yang H; Wang W; Ke C; Song Q; Bao H; Yu T; Loh KP; Guo J
    Nanotechnology; 2009 Feb; 20(6):065203. PubMed ID: 19417375
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.