These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 24990917)

  • 41. Chronometry on Spike-LFP Responses Reveals the Functional Neural Circuitry of Early Auditory Cortex Underlying Sound Processing and Discrimination.
    Banerjee A; Kikuchi Y; Mishkin M; Rauschecker JP; Horwitz B
    eNeuro; 2018; 5(3):. PubMed ID: 29971252
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Background sounds contribute to spectrotemporal plasticity in primary auditory cortex.
    Moucha R; Pandya PK; Engineer ND; Rathbun DL; Kilgard MP
    Exp Brain Res; 2005 May; 162(4):417-27. PubMed ID: 15616812
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Extra-classical tuning predicts stimulus-dependent receptive fields in auditory neurons.
    Schneider DM; Woolley SM
    J Neurosci; 2011 Aug; 31(33):11867-78. PubMed ID: 21849547
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Laminar transformation of frequency organization in auditory cortex.
    Winkowski DE; Kanold PO
    J Neurosci; 2013 Jan; 33(4):1498-508. PubMed ID: 23345224
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Stimulus-Specific Prediction Error Neurons in Mouse Auditory Cortex.
    Audette NJ; Schneider DM
    J Neurosci; 2023 Oct; 43(43):7119-7129. PubMed ID: 37699716
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Optimizing sound features for cortical neurons.
    deCharms RC; Blake DT; Merzenich MM
    Science; 1998 May; 280(5368):1439-43. PubMed ID: 9603734
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Does attention play a role in dynamic receptive field adaptation to changing acoustic salience in A1?
    Fritz JB; Elhilali M; David SV; Shamma SA
    Hear Res; 2007 Jul; 229(1-2):186-203. PubMed ID: 17329048
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The Effect of Complex Acoustic Environment during Early Development on the Responses of Auditory Cortex Neurons in Rats.
    Pysanenko K; Bureš Z; Lindovský J; Syka J
    Neuroscience; 2018 Feb; 371():221-228. PubMed ID: 29229554
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Long-lasting modulation by stimulus context in primate auditory cortex.
    Bartlett EL; Wang X
    J Neurophysiol; 2005 Jul; 94(1):83-104. PubMed ID: 15772236
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Nonlinearity of coding in primary auditory cortex of the awake ferret.
    Shechter B; Depireux DA
    Neuroscience; 2010 Jan; 165(2):612-20. PubMed ID: 19853021
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Diverse cortical codes for scene segmentation in primate auditory cortex.
    Malone BJ; Scott BH; Semple MN
    J Neurophysiol; 2015 Apr; 113(7):2934-52. PubMed ID: 25695655
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Plasticity of Multidimensional Receptive Fields in Core Rat Auditory Cortex Directed by Sound Statistics.
    Homma NY; Atencio CA; Schreiner CE
    Neuroscience; 2021 Jul; 467():150-170. PubMed ID: 33951506
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Behavioral modulation of neural encoding of click-trains in the primary and nonprimary auditory cortex of cats.
    Dong C; Qin L; Zhao Z; Zhong R; Sato Y
    J Neurosci; 2013 Aug; 33(32):13126-37. PubMed ID: 23926266
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Input-Specific Gain Modulation by Local Sensory Context Shapes Cortical and Thalamic Responses to Complex Sounds.
    Williamson RS; Ahrens MB; Linden JF; Sahani M
    Neuron; 2016 Jul; 91(2):467-81. PubMed ID: 27346532
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Age-related changes in neuronal receptive fields of primary auditory cortex in frequency, amplitude, and temporal domains.
    Bishop R; Qureshi F; Yan J
    Hear Res; 2022 Jul; 420():108504. PubMed ID: 35421776
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Emergent categorical representation of natural, complex sounds resulting from the early post-natal sound environment.
    Bao S; Chang EF; Teng CL; Heiser MA; Merzenich MM
    Neuroscience; 2013 Sep; 248():30-42. PubMed ID: 23747304
    [TBL] [Abstract][Full Text] [Related]  

  • 57. ON-OFF receptive fields in auditory cortex diverge during development and contribute to directional sweep selectivity.
    Sollini J; Chapuis GA; Clopath C; Chadderton P
    Nat Commun; 2018 May; 9(1):2084. PubMed ID: 29802383
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Sustained firing in auditory cortex evoked by preferred stimuli.
    Wang X; Lu T; Snider RK; Liang L
    Nature; 2005 May; 435(7040):341-6. PubMed ID: 15902257
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Contribution of inhibition to stimulus selectivity in primary auditory cortex of awake primates.
    Sadagopan S; Wang X
    J Neurosci; 2010 May; 30(21):7314-25. PubMed ID: 20505098
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Invariance of firing rate and field potential dynamics to stimulus modulation rate in human auditory cortex.
    Mukamel R; Nir Y; Harel M; Arieli A; Malach R; Fried I
    Hum Brain Mapp; 2011 Aug; 32(8):1181-93. PubMed ID: 20665720
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.