These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 24990917)

  • 61. Psilocybin decreases neural responsiveness and increases functional connectivity while preserving pure-tone frequency selectivity in mouse auditory cortex.
    Brockett AT; Francis NA
    J Neurophysiol; 2024 Jul; 132(1):45-53. PubMed ID: 38810366
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Adaptive stimulus optimization for auditory cortical neurons.
    O'Connor KN; Petkov CI; Sutter ML
    J Neurophysiol; 2005 Dec; 94(6):4051-67. PubMed ID: 16135553
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Nonlinear spectrotemporal sound analysis by neurons in the auditory midbrain.
    Escabi MA; Schreiner CE
    J Neurosci; 2002 May; 22(10):4114-31. PubMed ID: 12019330
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Predictive Ensemble Decoding of Acoustical Features Explains Context-Dependent Receptive Fields.
    Yildiz IB; Mesgarani N; Deneve S
    J Neurosci; 2016 Dec; 36(49):12338-12350. PubMed ID: 27927954
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Effects of adaptation on spectrotemporal receptive fields in primary auditory cortex.
    Pienkowski M; Eggermont JJ
    Neuroreport; 2009 Aug; 20(13):1198-203. PubMed ID: 19617858
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Acoustical Enrichment during Early Development Improves Response Reliability in the Adult Auditory Cortex of the Rat.
    Bureš Z; Pysanenko K; Lindovský J; Syka J
    Neural Plast; 2018; 2018():5903720. PubMed ID: 30002673
    [TBL] [Abstract][Full Text] [Related]  

  • 67. How do auditory cortex neurons represent communication sounds?
    Gaucher Q; Huetz C; Gourévitch B; Laudanski J; Occelli F; Edeline JM
    Hear Res; 2013 Nov; 305():102-12. PubMed ID: 23603138
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Functional congruity in local auditory cortical microcircuits.
    Atencio CA; Schreiner CE
    Neuroscience; 2016 Mar; 316():402-19. PubMed ID: 26768399
    [TBL] [Abstract][Full Text] [Related]  

  • 69. A Hierarchy of Time Scales for Discriminating and Classifying the Temporal Shape of Sound in Three Auditory Cortical Fields.
    Osman AF; Lee CM; Escabí MA; Read HL
    J Neurosci; 2018 Aug; 38(31):6967-6982. PubMed ID: 29954851
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Dynamics of spectro-temporal tuning in primary auditory cortex of the awake ferret.
    Shechter B; Dobbins HD; Marvit P; Depireux DA
    Hear Res; 2009 Oct; 256(1-2):118-30. PubMed ID: 19619629
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Spectral and spatial tuning of onset and offset response functions in auditory cortical fields A1 and CL of rhesus macaques.
    Ramamurthy DL; Recanzone GH
    J Neurophysiol; 2017 Mar; 117(3):966-986. PubMed ID: 27927783
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Temporal asymmetries in auditory coding and perception reflect multi-layered nonlinearities.
    Deneux T; Kempf A; Daret A; Ponsot E; Bathellier B
    Nat Commun; 2016 Sep; 7():12682. PubMed ID: 27580932
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Spectral integration in A1 of awake primates: neurons with single- and multipeaked tuning characteristics.
    Kadia SC; Wang X
    J Neurophysiol; 2003 Mar; 89(3):1603-22. PubMed ID: 12626629
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Single neurons may encode simultaneous stimuli by switching between activity patterns.
    Caruso VC; Mohl JT; Glynn C; Lee J; Willett SM; Zaman A; Ebihara AF; Estrada R; Freiwald WA; Tokdar ST; Groh JM
    Nat Commun; 2018 Jul; 9(1):2715. PubMed ID: 30006598
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Complexity and temporal dynamics of frequency coding in the awake rat auditory cortex.
    Gaese BH; Ostwald J
    Eur J Neurosci; 2003 Nov; 18(9):2638-52. PubMed ID: 14622166
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Neural representations of sinusoidal amplitude and frequency modulations in the primary auditory cortex of awake primates.
    Liang L; Lu T; Wang X
    J Neurophysiol; 2002 May; 87(5):2237-61. PubMed ID: 11976364
    [TBL] [Abstract][Full Text] [Related]  

  • 77. A hierarchical sparse coding model predicts acoustic feature encoding in both auditory midbrain and cortex.
    Zhang Q; Hu X; Hong B; Zhang B
    PLoS Comput Biol; 2019 Feb; 15(2):e1006766. PubMed ID: 30742609
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Rapid Task-Related Plasticity of Spectrotemporal Receptive Fields in the Auditory Midbrain.
    Slee SJ; David SV
    J Neurosci; 2015 Sep; 35(38):13090-102. PubMed ID: 26400939
    [TBL] [Abstract][Full Text] [Related]  

  • 79. The consequences of response nonlinearities for interpretation of spectrotemporal receptive fields.
    Christianson GB; Sahani M; Linden JF
    J Neurosci; 2008 Jan; 28(2):446-55. PubMed ID: 18184787
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Experience-Dependent Coding of Time-Dependent Frequency Trajectories by Off Responses in Secondary Auditory Cortex.
    Chong KK; Anandakumar DB; Dunlap AG; Kacsoh DB; Liu RC
    J Neurosci; 2020 Jun; 40(23):4469-4482. PubMed ID: 32327533
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.