These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
245 related articles for article (PubMed ID: 24990925)
1. Filtering of acoustic signals within the hearing organ. Ramamoorthy S; Zha D; Chen F; Jacques SL; Wang R; Choudhury N; Nuttall AL; Fridberger A J Neurosci; 2014 Jul; 34(27):9051-8. PubMed ID: 24990925 [TBL] [Abstract][Full Text] [Related]
2. Reticular lamina and basilar membrane vibrations in living mouse cochleae. Ren T; He W; Kemp D Proc Natl Acad Sci U S A; 2016 Aug; 113(35):9910-5. PubMed ID: 27516544 [TBL] [Abstract][Full Text] [Related]
3. Sound-evoked radial strain in the hearing organ. Tomo I; Boutet de Monvel J; Fridberger A Biophys J; 2007 Nov; 93(9):3279-84. PubMed ID: 17604314 [TBL] [Abstract][Full Text] [Related]
4. Minimal basilar membrane motion in low-frequency hearing. Warren RL; Ramamoorthy S; Ciganović N; Zhang Y; Wilson TM; Petrie T; Wang RK; Jacques SL; Reichenbach T; Nuttall AL; Fridberger A Proc Natl Acad Sci U S A; 2016 Jul; 113(30):E4304-10. PubMed ID: 27407145 [TBL] [Abstract][Full Text] [Related]
5. Static length changes of cochlear outer hair cells can tune low-frequency hearing. Ciganović N; Warren RL; Keçeli B; Jacob S; Fridberger A; Reichenbach T PLoS Comput Biol; 2018 Jan; 14(1):e1005936. PubMed ID: 29351276 [TBL] [Abstract][Full Text] [Related]
6. Vibration hotspots reveal longitudinal funneling of sound-evoked motion in the mammalian cochlea. Cooper NP; Vavakou A; van der Heijden M Nat Commun; 2018 Aug; 9(1):3054. PubMed ID: 30076297 [TBL] [Abstract][Full Text] [Related]
7. Vibration of the organ of Corti within the cochlear apex in mice. Gao SS; Wang R; Raphael PD; Moayedi Y; Groves AK; Zuo J; Applegate BE; Oghalai JS J Neurophysiol; 2014 Sep; 112(5):1192-204. PubMed ID: 24920025 [TBL] [Abstract][Full Text] [Related]
8. Interactions between Passive and Active Vibrations in the Organ of Corti In Vitro. Jabeen T; Holt JC; Becker JR; Nam JH Biophys J; 2020 Jul; 119(2):314-325. PubMed ID: 32579963 [TBL] [Abstract][Full Text] [Related]
9. An outer hair cell-powered global hydromechanical mechanism for cochlear amplification. He W; Burwood G; Fridberger A; Nuttall AL; Ren T Hear Res; 2022 Sep; 423():108407. PubMed ID: 34922772 [TBL] [Abstract][Full Text] [Related]
10. Amplification and Suppression of Traveling Waves along the Mouse Organ of Corti: Evidence for Spatial Variation in the Longitudinal Coupling of Outer Hair Cell-Generated Forces. Dewey JB; Applegate BE; Oghalai JS J Neurosci; 2019 Mar; 39(10):1805-1816. PubMed ID: 30651330 [TBL] [Abstract][Full Text] [Related]
11. Two-Dimensional Cochlear Micromechanics Measured In Vivo Demonstrate Radial Tuning within the Mouse Organ of Corti. Lee HY; Raphael PD; Xia A; Kim J; Grillet N; Applegate BE; Ellerbee Bowden AK; Oghalai JS J Neurosci; 2016 Aug; 36(31):8160-73. PubMed ID: 27488636 [TBL] [Abstract][Full Text] [Related]
12. Reticular lamina vibrations in the apical turn of a living guinea pig cochlea. Khanna SM; Hao LF Hear Res; 1999 Jun; 132(1-2):15-33. PubMed ID: 10392544 [TBL] [Abstract][Full Text] [Related]
13. Sound Induced Vibrations Deform the Organ of Corti Complex in the Low-Frequency Apical Region of the Gerbil Cochlea for Normal Hearing : Sound Induced Vibrations Deform the Organ of Corti Complex. Meenderink SWF; Lin X; Park BH; Dong W J Assoc Res Otolaryngol; 2022 Oct; 23(5):579-591. PubMed ID: 35798901 [TBL] [Abstract][Full Text] [Related]
14. Two types of cochlear hair cells with two different modes of activation are better than one. Sohmer H J Basic Clin Physiol Pharmacol; 2012 Jan; 23(1):1-3. PubMed ID: 22865443 [TBL] [Abstract][Full Text] [Related]
15. In vivo outer hair cell length changes expose the active process in the cochlea. Zha D; Chen F; Ramamoorthy S; Fridberger A; Choudhury N; Jacques SL; Wang RK; Nuttall AL PLoS One; 2012; 7(4):e32757. PubMed ID: 22496736 [TBL] [Abstract][Full Text] [Related]
16. Frequency tuning of basilar membrane and auditory nerve fibers in the same cochleae. Narayan SS; Temchin AN; Recio A; Ruggero MA Science; 1998 Dec; 282(5395):1882-4. PubMed ID: 9836636 [TBL] [Abstract][Full Text] [Related]
17. Hair cell force generation does not amplify or tune vibrations within the chicken basilar papilla. Xia A; Liu X; Raphael PD; Applegate BE; Oghalai JS Nat Commun; 2016 Oct; 7():13133. PubMed ID: 27796310 [TBL] [Abstract][Full Text] [Related]
18. Internal shearing within the hearing organ evoked by basilar membrane motion. Fridberger A; Boutet de Monvel J; Ulfendahl M J Neurosci; 2002 Nov; 22(22):9850-7. PubMed ID: 12427841 [TBL] [Abstract][Full Text] [Related]
19. Timing of the reticular lamina and basilar membrane vibration in living gerbil cochleae. He W; Kemp D; Ren T Elife; 2018 Sep; 7():. PubMed ID: 30183615 [TBL] [Abstract][Full Text] [Related]
20. The reticular lamina and basilar membrane vibrations in the transverse direction in the basal turn of the living gerbil cochlea. He W; Burwood G; Porsov EV; Fridberger A; Nuttall AL; Ren T Sci Rep; 2022 Nov; 12(1):19810. PubMed ID: 36396720 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]