BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 24990991)

  • 1. High-resolution mapping of two types of spontaneous mitotic gene conversion events in Saccharomyces cerevisiae.
    Yim E; O'Connell KE; St Charles J; Petes TD
    Genetics; 2014 Sep; 198(1):181-92. PubMed ID: 24990991
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-resolution mapping of spontaneous mitotic recombination hotspots on the 1.1 Mb arm of yeast chromosome IV.
    St Charles J; Petes TD
    PLoS Genet; 2013 Apr; 9(4):e1003434. PubMed ID: 23593029
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitotic Gene Conversion Tracts Associated with Repair of a Defined Double-Strand Break in
    Hum YF; Jinks-Robertson S
    Genetics; 2017 Sep; 207(1):115-128. PubMed ID: 28743762
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A fine-structure map of spontaneous mitotic crossovers in the yeast Saccharomyces cerevisiae.
    Lee PS; Greenwell PW; Dominska M; Gawel M; Hamilton M; Petes TD
    PLoS Genet; 2009 Mar; 5(3):e1000410. PubMed ID: 19282969
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of Exo1p exonuclease in DNA end resection to generate gene conversion tracts in Saccharomyces cerevisiae.
    Yin Y; Petes TD
    Genetics; 2014 Aug; 197(4):1097-109. PubMed ID: 24835424
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-resolution genome-wide analysis of irradiated (UV and γ-rays) diploid yeast cells reveals a high frequency of genomic loss of heterozygosity (LOH) events.
    St Charles J; Hazkani-Covo E; Yin Y; Andersen SL; Dietrich FS; Greenwell PW; Malc E; Mieczkowski P; Petes TD
    Genetics; 2012 Apr; 190(4):1267-84. PubMed ID: 22267500
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Remarkably Long-Tract Gene Conversion Induced by Fragile Site Instability in Saccharomyces cerevisiae.
    Chumki SA; Dunn MK; Coates TF; Mishler JD; Younkin EM; Casper AM
    Genetics; 2016 Sep; 204(1):115-28. PubMed ID: 27343237
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fine-resolution mapping of spontaneous and double-strand break-induced gene conversion tracts in Saccharomyces cerevisiae reveals reversible mitotic conversion polarity.
    Sweetser DB; Hough H; Whelden JF; Arbuckle M; Nickoloff JA
    Mol Cell Biol; 1994 Jun; 14(6):3863-75. PubMed ID: 8196629
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-wide high-resolution mapping of UV-induced mitotic recombination events in Saccharomyces cerevisiae.
    Yin Y; Petes TD
    PLoS Genet; 2013 Oct; 9(10):e1003894. PubMed ID: 24204306
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiple heterologies increase mitotic double-strand break-induced allelic gene conversion tract lengths in yeast.
    Nickoloff JA; Sweetser DB; Clikeman JA; Khalsa GJ; Wheeler SL
    Genetics; 1999 Oct; 153(2):665-79. PubMed ID: 10511547
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-Resolution Mapping of Homologous Recombination Events in rad3 Hyper-Recombination Mutants in Yeast.
    Andersen SL; Zhang A; Dominska M; Moriel-Carretero M; Herrera-Moyano E; Aguilera A; Petes TD
    PLoS Genet; 2016 Mar; 12(3):e1005938. PubMed ID: 26968037
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Friedreich's ataxia (GAA)n•(TTC)n repeats strongly stimulate mitotic crossovers in Saccharomyces cerevisae.
    Tang W; Dominska M; Greenwell PW; Harvanek Z; Lobachev KS; Kim HM; Narayanan V; Mirkin SM; Petes TD
    PLoS Genet; 2011 Jan; 7(1):e1001270. PubMed ID: 21249181
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNA strand-exchange patterns associated with double-strand break-induced and spontaneous mitotic crossovers in Saccharomyces cerevisiae.
    Hum YF; Jinks-Robertson S
    PLoS Genet; 2018 Mar; 14(3):e1007302. PubMed ID: 29579095
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fragile site instability in Saccharomyces cerevisiae causes loss of heterozygosity by mitotic crossovers and break-induced replication.
    Rosen DM; Younkin EM; Miller SD; Casper AM
    PLoS Genet; 2013; 9(9):e1003817. PubMed ID: 24068975
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-resolution mapping of meiotic crossovers and non-crossovers in yeast.
    Mancera E; Bourgon R; Brozzi A; Huber W; Steinmetz LM
    Nature; 2008 Jul; 454(7203):479-85. PubMed ID: 18615017
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Yeast intrachromosomal recombination: long gene conversion tracts are preferentially associated with reciprocal exchange and require the RAD1 and RAD3 gene products.
    Aguilera A; Klein HL
    Genetics; 1989 Dec; 123(4):683-94. PubMed ID: 2558957
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physical lengths of meiotic and mitotic gene conversion tracts in Saccharomyces cerevisiae.
    Judd SR; Petes TD
    Genetics; 1988 Mar; 118(3):401-10. PubMed ID: 2835285
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aberrant double-strand break repair resulting in half crossovers in mutants defective for Rad51 or the DNA polymerase delta complex.
    Smith CE; Lam AF; Symington LS
    Mol Cell Biol; 2009 Mar; 29(6):1432-41. PubMed ID: 19139272
    [TBL] [Abstract][Full Text] [Related]  

  • 19. From the Cover: mitotic gene conversion events induced in G1-synchronized yeast cells by gamma rays are similar to spontaneous conversion events.
    Lee PS; Petes TD
    Proc Natl Acad Sci U S A; 2010 Apr; 107(16):7383-8. PubMed ID: 20231456
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A two-pathway analysis of meiotic crossing over and gene conversion in Saccharomyces cerevisiae.
    Stahl FW; Foss HM
    Genetics; 2010 Oct; 186(2):515-36. PubMed ID: 20679514
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.