BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 24991492)

  • 1. Hairy suckers: the surface microstructure and its possible functional significance in the Octopus vulgaris sucker.
    Tramacere F; Appel E; Mazzolai B; Gorb SN
    Beilstein J Nanotechnol; 2014; 5():561-5. PubMed ID: 24991492
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Octopus-like suction cups: from natural to artificial solutions.
    Tramacere F; Follador M; Pugno NM; Mazzolai B
    Bioinspir Biomim; 2015 May; 10(3):035004. PubMed ID: 25970079
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of hairs in the adhesion of octopus suckers: a hierarchical peeling approach.
    Greco G; Bosia F; Tramacere F; Mazzolai B; Pugno NM
    Bioinspir Biomim; 2020 Mar; 15(3):035006. PubMed ID: 32018231
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The morphology and adhesion mechanism of Octopus vulgaris suckers.
    Tramacere F; Beccai L; Kuba M; Gozzi A; Bifone A; Mazzolai B
    PLoS One; 2013; 8(6):e65074. PubMed ID: 23750233
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design, experiment and adsorption mechanism analysis of bionic sucker based on octopus sucker.
    Xi P; Cong Q; Xu J; Qiu K
    Proc Inst Mech Eng H; 2019 Dec; 233(12):1250-1261. PubMed ID: 31617793
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and mechanical properties of Octopus vulgaris suckers.
    Tramacere F; Kovalev A; Kleinteich T; Gorb SN; Mazzolai B
    J R Soc Interface; 2014 Feb; 11(91):20130816. PubMed ID: 24284894
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly Adaptable and Biocompatible Octopus-Like Adhesive Patches with Meniscus-Controlled Unfoldable 3D Microtips for Underwater Surface and Hairy Skin.
    Baik S; Kim J; Lee HJ; Lee TH; Pang C
    Adv Sci (Weinh); 2018 Aug; 5(8):1800100. PubMed ID: 30128235
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Learning from Northern clingfish (Gobiesox maeandricus): bioinspired suction cups attach to rough surfaces.
    Ditsche P; Summers A
    Philos Trans R Soc Lond B Biol Sci; 2019 Oct; 374(1784):20190204. PubMed ID: 31495305
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reversible Underwater Adhesion: The Unique C-shaped Suckers of Net-winged Midge Larvae (Blepharicera sp.).
    Liu GL; Chang HK; Chuang YC; Lin YM; Chen PY
    Sci Rep; 2020 Jun; 10(1):9395. PubMed ID: 32523030
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Octopus-inspired sucker to absorb soft tissues: stiffness gradient and acetabular protuberance improve the adsorption effect.
    Wang Y; Sun G; He Y; Zhou K; Zhu L
    Bioinspir Biomim; 2022 Mar; 17(3):. PubMed ID: 35235920
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extreme suction attachment performance from specialised insects living in mountain streams (Diptera: Blephariceridae).
    Kang V; White RT; Chen S; Federle W
    Elife; 2021 Nov; 10():. PubMed ID: 34731079
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A New Concept for an Adhesive Material Inspired by Clingfish Sucker Nanofilaments.
    Tsujioka K; Matsuo Y; Shimomura M; Hirai Y
    Langmuir; 2022 Jan; 38(3):1215-1222. PubMed ID: 35026116
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Classification and Evaluation of Octopus-Inspired Suction Cups for Soft Continuum Robots.
    van Veggel S; Wiertlewski M; Doubrovski EL; Kooijman A; Shahabi E; Mazzolai B; Scharff RBN
    Adv Sci (Weinh); 2024 Jun; ():e2400806. PubMed ID: 38874316
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inspiration, simulation and design for smart robot manipulators from the sucker actuation mechanism of cephalopods.
    Grasso FW; Setlur P
    Bioinspir Biomim; 2007 Dec; 2(4):S170-81. PubMed ID: 18037726
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Performance and scaling of a novel locomotor structure: adhesive capacity of climbing gobiid fishes.
    Maie T; Schoenfuss HL; Blob RW
    J Exp Biol; 2012 Nov; 215(Pt 22):3925-36. PubMed ID: 23100486
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unveiling the morphology of the acetabulum in octopus suckers and its role in attachment.
    Tramacere F; Pugno NM; Kuba MJ; Mazzolai B
    Interface Focus; 2015 Feb; 5(1):20140050. PubMed ID: 25657834
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The structure and adhesive mechanism of octopus suckers.
    Kier WM; Smith AM
    Integr Comp Biol; 2002 Dec; 42(6):1146-53. PubMed ID: 21680399
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of soft and rough substrates on suction-based adhesion.
    Huie JM; Summers AP
    J Exp Biol; 2022 May; 225(9):. PubMed ID: 35467004
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Underwater attachment using hairs: the functioning of spatula and sucker setae from male diving beetles.
    Chen Y; Shih MC; Wu MH; Yang EC; Chi KJ
    J R Soc Interface; 2014 Aug; 11(97):20140273. PubMed ID: 24920108
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reversible adhesion to rough surfaces both in and out of water, inspired by the clingfish suction disc.
    Sandoval JA; Jadhav S; Quan H; Deheyn DD; Tolley MT
    Bioinspir Biomim; 2019 Oct; 14(6):066016. PubMed ID: 31553967
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.