These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

317 related articles for article (PubMed ID: 24991507)

  • 1. Nanostructure sensitization of transition metal oxides for visible-light photocatalysis.
    Chen H; Wang L
    Beilstein J Nanotechnol; 2014; 5():696-710. PubMed ID: 24991507
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multinary I-III-VI2 and I2-II-IV-VI4 Semiconductor Nanostructures for Photocatalytic Applications.
    Regulacio MD; Han MY
    Acc Chem Res; 2016 Mar; 49(3):511-9. PubMed ID: 26864703
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasmonic photocatalysis.
    Zhang X; Chen YL; Liu RS; Tsai DP
    Rep Prog Phys; 2013 Apr; 76(4):046401. PubMed ID: 23455654
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasmonic Coupling Architectures for Enhanced Photocatalysis.
    Liu D; Xue C
    Adv Mater; 2021 Nov; 33(46):e2005738. PubMed ID: 33891777
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent Progress in the Synthesis and Applications of Composite Photocatalysts: A Critical Review.
    Humayun M; Wang C; Luo W
    Small Methods; 2022 Feb; 6(2):e2101395. PubMed ID: 35174987
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Outlook on bismuth-based photocatalysts for environmental applications: A specific emphasis on Z-scheme mechanisms.
    Balakumar S; Mahesh N; Kamaraj M; Shyamalagowri S; Manjunathan J; Murugesan S; Aravind J; Babu PS
    Chemosphere; 2022 Sep; 303(Pt 1):135052. PubMed ID: 35618054
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasmonic photocatalyst-like fluorescent proteins for generating reactive oxygen species.
    Leem JW; Kim SR; Choi KH; Kim YL
    Nano Converg; 2018; 5(1):8. PubMed ID: 29607289
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Active Site Engineering on Plasmonic Nanostructures for Efficient Photocatalysis.
    Jiang W; Low BQL; Long R; Low J; Loh H; Tang KY; Chai CHT; Zhu H; Zhu H; Li Z; Loh XJ; Xiong Y; Ye E
    ACS Nano; 2023 Mar; 17(5):4193-4229. PubMed ID: 36802513
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Research progress in metal sulfides for photocatalysis: From activity to stability.
    Zhang S; Ou X; Xiang Q; Carabineiro SAC; Fan J; Lv K
    Chemosphere; 2022 Sep; 303(Pt 2):135085. PubMed ID: 35618060
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy.
    Linic S; Christopher P; Ingram DB
    Nat Mater; 2011 Nov; 10(12):911-21. PubMed ID: 22109608
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent Advances in Carbonaceous Photocatalysts with Enhanced Photocatalytic Performances: A Mini Review.
    Ge J; Zhang Y; Park SJ
    Materials (Basel); 2019 Jun; 12(12):. PubMed ID: 31200594
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting.
    Osterloh FE
    Chem Soc Rev; 2013 Mar; 42(6):2294-320. PubMed ID: 23072874
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advances in photocatalytic disinfection of bacteria: Development of photocatalysts and mechanisms.
    Wang W; Huang G; Yu JC; Wong PK
    J Environ Sci (China); 2015 Aug; 34():232-47. PubMed ID: 26257366
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-Throughput Strategies for the Design, Discovery, and Analysis of Bismuth-Based Photocatalysts.
    Prabhakar Vattikuti SV; Zeng J; Ramaraghavulu R; Shim J; Mauger A; Julien CM
    Int J Mol Sci; 2022 Dec; 24(1):. PubMed ID: 36614112
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sustainable hydrogen production for the greener environment by quantum dots-based efficient photocatalysts: A review.
    Rao VN; Reddy NL; Kumari MM; Cheralathan KK; Ravi P; Sathish M; Neppolian B; Reddy KR; Shetti NP; Prathap P; Aminabhavi TM; Shankar MV
    J Environ Manage; 2019 Oct; 248():109246. PubMed ID: 31323456
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CuO quantum-dot-sensitized mesoporous ZnO for visible-light photocatalysis.
    Liu Y; Shi J; Peng Q; Li Y
    Chemistry; 2013 Mar; 19(13):4319-26. PubMed ID: 23447144
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functionalized nanostructures for enhanced photocatalytic performance under solar light.
    Guo L; Jing D; Liu M; Chen Y; Shen S; Shi J; Zhang K
    Beilstein J Nanotechnol; 2014; 5():994-1004. PubMed ID: 25161835
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A hierarchical nanostructured carbon nanofiber-In2S3 photocatalyst with high photodegradation and disinfection abilities under visible light.
    Gao P; Li AR; Tai MH; Liu ZY; Sun DD
    Chem Asian J; 2014 Jun; 9(6):1663-70. PubMed ID: 24771718
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low temperature energy- efficient synthesis methods for bismuth-based nanostructured photocatalysts for environmental remediation application: A review.
    S D; Tayade RJ
    Chemosphere; 2022 Oct; 304():135300. PubMed ID: 35691396
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Defect Engineering and Phase Junction Architecture of Wide-Bandgap ZnS for Conflicting Visible Light Activity in Photocatalytic H₂ Evolution.
    Fang Z; Weng S; Ye X; Feng W; Zheng Z; Lu M; Lin S; Fu X; Liu P
    ACS Appl Mater Interfaces; 2015 Jul; 7(25):13915-24. PubMed ID: 26061632
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.