BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 24991510)

  • 1. An analytical approach to evaluate the performance of graphene and carbon nanotubes for NH3 gas sensor applications.
    Akbari E; Arora VK; Enzevaee A; Ahmadi MT; Saeidmanesh M; Khaledian M; Karimi H; Yusof R
    Beilstein J Nanotechnol; 2014; 5():726-34. PubMed ID: 24991510
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analytical calculation of sensing parameters on carbon nanotube based gas sensors.
    Akbari E; Buntat Z; Ahmad MH; Enzevaee A; Yousof R; Iqbal SM; Ahmadi MT; Sidik MA; Karimi H
    Sensors (Basel); 2014 Mar; 14(3):5502-15. PubMed ID: 24658617
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Analytical Conductance Model for Gas Detection Based on a Zigzag Carbon Nanotube Sensor.
    Hosseingholipourasl A; Hafizah Syed Ariffin S; Ahmadi MT; Rahimian Koloor SS; Petrů M; Hamzah A
    Sensors (Basel); 2020 Jan; 20(2):. PubMed ID: 31936402
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Review of Inkjet Printed Graphene and Carbon Nanotubes Based Gas Sensors.
    Pandhi T; Chandnani A; Subbaraman H; Estrada D
    Sensors (Basel); 2020 Oct; 20(19):. PubMed ID: 33023160
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon Nanotube-Based Field-Effect Transistor-Type Sensor with a Sensing Gate for Ppb-Level Formaldehyde Detection.
    Liu C; Hu J; Wu G; Cao J; Zhang Z; Zhang Y
    ACS Appl Mater Interfaces; 2021 Dec; 13(47):56309-56319. PubMed ID: 34787998
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbon nanotubes: functionalisation and their application in chemical sensors.
    Norizan MN; Moklis MH; Ngah Demon SZ; Halim NA; Samsuri A; Mohamad IS; Knight VF; Abdullah N
    RSC Adv; 2020 Nov; 10(71):43704-43732. PubMed ID: 35519676
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metal-modified and vertically aligned carbon nanotube sensors array for landfill gas monitoring applications.
    Penza M; Rossi R; Alvisi M; Serra E
    Nanotechnology; 2010 Mar; 21(10):105501. PubMed ID: 20154374
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulations of Graphene Nanoribbon Field Effect Transistor for the Detection of Propane and Butane Gases: A First Principles Study.
    Rashid MH; Koel A; Rang T
    Nanomaterials (Basel); 2020 Jan; 10(1):. PubMed ID: 31947803
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoelectronic Heterodyne Sensor: A New Electronic Sensing Paradigm.
    Kulkarni GS; Zang W; Zhong Z
    Acc Chem Res; 2016 Nov; 49(11):2578-2586. PubMed ID: 27668314
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrahigh Selective Room-Temperature Ammonia Gas Sensor Based on Tin-Titanium Dioxide/reduced Graphene/Carbon Nanotube Nanocomposites by the Solvothermal Method.
    Seekaew Y; Pon-On W; Wongchoosuk C
    ACS Omega; 2019 Oct; 4(16):16916-16924. PubMed ID: 31646238
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Overview of Carbon Nanotubes and Graphene for Biosensing Applications.
    Zhu Z
    Nanomicro Lett; 2017; 9(3):25. PubMed ID: 30393720
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Schemes for Single Electron Transistor Based on Double Quantum Dot Islands Utilizing a Graphene Nanoscroll, Carbon Nanotube and Fullerene.
    Khademhosseini V; Dideban D; Ahmadi MT; Heidari H
    Molecules; 2022 Jan; 27(1):. PubMed ID: 35011532
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensing mechanisms for carbon nanotube based NH3 gas detection.
    Peng N; Zhang Q; Chow CL; Tan OK; Marzari N
    Nano Lett; 2009 Apr; 9(4):1626-30. PubMed ID: 19281216
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hybrid Films of Graphene and Carbon Nanotubes for High Performance Chemical and Temperature Sensing Applications.
    Tung TT; Pham-Huu C; Janowska I; Kim T; Castro M; Feller JF
    Small; 2015 Jul; 11(28):3485-93. PubMed ID: 25808714
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-Performance Gas Sensor of Polyaniline/Carbon Nanotube Composites Promoted by Interface Engineering.
    Zhang W; Cao S; Wu Z; Zhang M; Cao Y; Guo J; Zhong F; Duan H; Jia D
    Sensors (Basel); 2019 Dec; 20(1):. PubMed ID: 31881692
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Out-of-plane growth of CNTs on graphene for supercapacitor applications.
    Kim YS; Kumar K; Fisher FT; Yang EH
    Nanotechnology; 2012 Jan; 23(1):015301. PubMed ID: 22155846
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Edge-Functionalized Graphene Nanoribbon Chemical Sensor: Comparison with Carbon Nanotube and Graphene.
    Cho KM; Cho SY; Chong S; Koh HJ; Kim DW; Kim J; Jung HT
    ACS Appl Mater Interfaces; 2018 Dec; 10(49):42905-42914. PubMed ID: 30421906
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wafer-Scale Field-Effect Transistor-Type Sensor Using a Carbon Nanotube Film as a Channel for Ppb-Level Hydrogen Sulfide Detection.
    Zhan S; Zuo H; Liu B; Xu W; Cao J; Zhang Y; Wei X
    ACS Sens; 2023 Aug; 8(8):3060-3067. PubMed ID: 37478418
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controlled growth of carbon nanotube-graphene hybrid materials for flexible and transparent conductors and electron field emitters.
    Nguyen DD; Tai NH; Chen SY; Chueh YL
    Nanoscale; 2012 Jan; 4(2):632-8. PubMed ID: 22147118
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Strategy for Multigas Identification Using Multielectrical Parameters Extracted from a Single Carbon-Based Field-Effect Transistor Sensor.
    Shi L; Tang P; Hu J; Zhang Y
    ACS Sens; 2024 Jun; ():. PubMed ID: 38843033
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.