These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 24991644)

  • 1. Mathematical modelling of thermal process to aquatic environment with different hydrometeorological conditions.
    Issakhov A
    ScientificWorldJournal; 2014; 2014():678095. PubMed ID: 24991644
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New Finite Difference Methods Based on IIM for Inextensible Interfaces in Incompressible Flows.
    Li Z; Lai MC
    East Asian J Applied Math; 2011 Jan; 1(2):155-171. PubMed ID: 23795308
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical modeling of Joule heating-induced temperature gradient focusing in microfluidic channels.
    Tang G; Yang C
    Electrophoresis; 2008 Mar; 29(5):1006-12. PubMed ID: 18306182
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generalized modification in the lattice Bhatnagar-Gross-Krook model for incompressible Navier-Stokes equations and convection-diffusion equations.
    Yang X; Shi B; Chai Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):013309. PubMed ID: 25122412
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerics made easy: solving the Navier-Stokes equation for arbitrary channel cross-sections using Microsoft Excel.
    Richter C; Kotz F; Giselbrecht S; Helmer D; Rapp BE
    Biomed Microdevices; 2016 Jun; 18(3):52. PubMed ID: 27233665
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A simple numerical method for snowmelt simulation based on the equation of heat energy.
    Stojković M; Jaćimović N
    Water Sci Technol; 2016; 73(7):1550-9. PubMed ID: 27054726
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A three-dimensional non-hydrostatic coupled model for free surface - Subsurface variable - Density flows.
    Shokri N; Namin MM; Farhoudi J
    J Contam Hydrol; 2018 Sep; 216():38-49. PubMed ID: 30126718
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A two or three compartments hyperbolic reaction-diffusion model for the aquatic food chain.
    Barbera E; Consolo G; Valenti G
    Math Biosci Eng; 2015 Jun; 12(3):451-72. PubMed ID: 25811556
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Laminar Wall Jet Flow and Heat Transfer over a Shallow Cavity.
    Prabu PM; Padmanaban KP
    ScientificWorldJournal; 2015; 2015():926249. PubMed ID: 26413565
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phase-field-based lattice Boltzmann finite-difference model for simulating thermocapillary flows.
    Liu H; Valocchi AJ; Zhang Y; Kang Q
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):013010. PubMed ID: 23410429
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of a coupled model for numerical simulation of a multiphase flow system in a porous medium and a surface fluid.
    Hibi Y; Tomigashi A
    J Contam Hydrol; 2015 Sep; 180():34-55. PubMed ID: 26255905
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational fluid dynamic simulation of two-fluid non-Newtonian nanohemodynamics through a diseased artery with a stenosis and aneurysm.
    Dubey A; Vasu B; Anwar Bég O; Gorla RSR; Kadir A
    Comput Methods Biomech Biomed Engin; 2020 Jun; 23(8):345-371. PubMed ID: 32098508
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flow, diffusion, and thermal convection in percolation clusters: NMR experiments and numerical FEM/FVM simulations.
    Kimmich R; Klemm A; Weber M
    Magn Reson Imaging; 2001; 19(3-4):353-61. PubMed ID: 11445311
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simplified method for simulation of incompressible viscous flows inspired by the lattice Boltzmann method.
    Huang JJ
    Phys Rev E; 2021 May; 103(5-1):053311. PubMed ID: 34134207
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computer simulation of convective diffusion processes in large arteries.
    Rappitsch G; Perktold K
    J Biomech; 1996 Feb; 29(2):207-15. PubMed ID: 8849814
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrokinetic transport through nanochannels.
    Movahed S; Li D
    Electrophoresis; 2011 Jun; 32(11):1259-67. PubMed ID: 21538982
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Effects of Thermal Radiation on an Unsteady MHD Axisymmetric Stagnation-Point Flow over a Shrinking Sheet in Presence of Temperature Dependent Thermal Conductivity with Navier Slip.
    Mondal S; Haroun NA; Sibanda P
    PLoS One; 2015; 10(9):e0138355. PubMed ID: 26414006
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conjugate effects of heat and mass transfer on MHD free convection flow over an inclined plate embedded in a porous medium.
    Ali F; Khan I; Samiulhaq ; Shafie S
    PLoS One; 2013; 8(6):e65223. PubMed ID: 23840321
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A simulated dye method for flow visualization with a computational model for blood flow.
    Kim T; Cheer AY; Dwyer HA
    J Biomech; 2004 Aug; 37(8):1125-36. PubMed ID: 15212917
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inverse design of indoor environment using an adjoint RNG k-ε turbulence model.
    Zhao X; Chen Q
    Indoor Air; 2019 Mar; 29(2):320-330. PubMed ID: 30588666
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.