BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 24991756)

  • 1. Mechanistic insight into CM18-Tat11 peptide membrane-perturbing action by whole-cell patch-clamp recording.
    Fasoli A; Salomone F; Benedusi M; Boccardi C; Rispoli G; Beltram F; Cardarelli F
    Molecules; 2014 Jul; 19(7):9228-39. PubMed ID: 24991756
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-yield nontoxic gene transfer through conjugation of the CM₁₈-Tat₁₁ chimeric peptide with nanosecond electric pulses.
    Salomone F; Breton M; Leray I; Cardarelli F; Boccardi C; Bonhenry D; Tarek M; Mir LM; Beltram F
    Mol Pharm; 2014 Jul; 11(7):2466-74. PubMed ID: 24865174
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro efficient transfection by CM₁₈-Tat₁₁ hybrid peptide: a new tool for gene-delivery applications.
    Salomone F; Cardarelli F; Signore G; Boccardi C; Beltram F
    PLoS One; 2013; 8(7):e70108. PubMed ID: 23922923
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel chimeric cell-penetrating peptide with membrane-disruptive properties for efficient endosomal escape.
    Salomone F; Cardarelli F; Di Luca M; Boccardi C; Nifosì R; Bardi G; Di Bari L; Serresi M; Beltram F
    J Control Release; 2012 Nov; 163(3):293-303. PubMed ID: 23041543
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Studying the Mechanism of Membrane Permeabilization Induced by Antimicrobial Peptides Using Patch-Clamp Techniques.
    Rispoli G
    Methods Mol Biol; 2017; 1548():255-269. PubMed ID: 28013510
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pore forming properties of cecropin-melittin hybrid peptide in a natural membrane.
    Milani A; Benedusi M; Aquila M; Rispoli G
    Molecules; 2009 Dec; 14(12):5179-88. PubMed ID: 20032884
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Perforated whole-cell patch-clamp recording.
    Linley JE
    Methods Mol Biol; 2013; 998():149-57. PubMed ID: 23529427
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photodamage of lipid bilayers by irradiation of a fluorescently labeled cell-penetrating peptide.
    Meerovich I; Muthukrishnan N; Johnson GA; Erazo-Oliveras A; Pellois JP
    Biochim Biophys Acta; 2014 Jan; 1840(1):507-15. PubMed ID: 24135456
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tat(48-60) peptide amino acid sequence is not unique in its cell penetrating properties and cell-surface glycosaminoglycans inhibit its cellular uptake.
    Subrizi A; Tuominen E; Bunker A; Róg T; Antopolsky M; Urtti A
    J Control Release; 2012 Mar; 158(2):277-85. PubMed ID: 22100438
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient entry of cell-penetrating peptide nona-arginine into adherent cells involves a transient increase in intracellular calcium.
    Melikov K; Hara A; Yamoah K; Zaitseva E; Zaitsev E; Chernomordik LV
    Biochem J; 2015 Oct; 471(2):221-30. PubMed ID: 26272944
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calcium and membrane repair.
    Palm-Apergi C; Hällbrink M
    Methods Mol Biol; 2011; 683():157-64. PubMed ID: 21053128
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Small efficient cell-penetrating peptides derived from scorpion toxin maurocalcine.
    Poillot C; Bichraoui H; Tisseyre C; Bahemberae E; Andreotti N; Sabatier JM; Ronjat M; De Waard M
    J Biol Chem; 2012 May; 287(21):17331-17342. PubMed ID: 22433862
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cellular uptake and biophysical properties of galactose and/or tryptophan containing cell-penetrating peptides.
    Lécorché P; Walrant A; Burlina F; Dutot L; Sagan S; Mallet JM; Desbat B; Chassaing G; Alves ID; Lavielle S
    Biochim Biophys Acta; 2012 Mar; 1818(3):448-57. PubMed ID: 22182801
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High quality ion channel analysis on a chip with the NPC technology.
    Brüggemann A; George M; Klau M; Beckler M; Steindl J; Behrends JC; Fertig N
    Assay Drug Dev Technol; 2003 Oct; 1(5):665-73. PubMed ID: 15090239
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Repetitive firing triggers clustering of Kv2.1 potassium channels in Aplysia neurons.
    Zhang Y; McKay SE; Bewley B; Kaczmarek LK
    J Biol Chem; 2008 Apr; 283(16):10632-41. PubMed ID: 18276591
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Perforated Whole-Cell Recordings in Automated Patch Clamp Electrophysiology.
    Rosholm KR; Boddum K; Lindquist A
    Methods Mol Biol; 2021; 2188():93-108. PubMed ID: 33119848
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel way to go whole-cell in patch-clamp experiments.
    Inayat S; Zhao Y; Cantrell DR; Dikin D; Pinto LH; Troy JB
    IEEE Trans Biomed Eng; 2010 Nov; 57(11):. PubMed ID: 20595080
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of tryptophans on the cellular uptake and membrane interaction of arginine-rich cell penetrating peptides.
    Jobin ML; Blanchet M; Henry S; Chaignepain S; Manigand C; Castano S; Lecomte S; Burlina F; Sagan S; Alves ID
    Biochim Biophys Acta; 2015 Feb; 1848(2):593-602. PubMed ID: 25445669
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved antibacterial activity of a marine peptide-N2 against intracellular Salmonella typhimurium by conjugating with cell-penetrating peptides-bLFcin
    Li Z; Wang X; Teng D; Mao R; Hao Y; Yang N; Chen H; Wang X; Wang J
    Eur J Med Chem; 2018 Feb; 145():263-272. PubMed ID: 29329001
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study of uptake of cell penetrating peptides and their cargoes in permeabilized wheat immature embryos.
    Chugh A; Eudes F
    FEBS J; 2008 May; 275(10):2403-14. PubMed ID: 18397318
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.