These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 24991800)
1. Engineered silybin nanoparticles educe efficient control in experimental diabetes. Das S; Roy P; Pal R; Auddy RG; Chakraborti AS; Mukherjee A PLoS One; 2014; 9(7):e101818. PubMed ID: 24991800 [TBL] [Abstract][Full Text] [Related]
2. Influence of polymers ratio on insulin-loaded nanoparticles based on poly-epsilon-caprolactone and Eudragit RS for oral administration. Socha M; Sapin A; Damgé C; Maincent P Drug Deliv; 2009 Nov; 16(8):430-6. PubMed ID: 19839787 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of anti-diabetic activity of glycyrrhizin-loaded nanoparticles in nicotinamide-streptozotocin-induced diabetic rats. Rani R; Dahiya S; Dhingra D; Dilbaghi N; Kim KH; Kumar S Eur J Pharm Sci; 2017 Aug; 106():220-230. PubMed ID: 28595874 [TBL] [Abstract][Full Text] [Related]
4. Protective and antidiabetic effects of extract from Nigella sativa on blood glucose concentrations against streptozotocin (STZ)-induced diabetic in rats: an experimental study with histopathological evaluation. Alimohammadi S; Hobbenaghi R; Javanbakht J; Kheradmand D; Mortezaee R; Tavakoli M; Khadivar F; Akbari H Diagn Pathol; 2013 Aug; 8():137. PubMed ID: 23947821 [TBL] [Abstract][Full Text] [Related]
5. Hydrophilic poly (ethylene glycol) capped poly (lactic-co-glycolic) acid nanoparticles for subcutaneous delivery of insulin in diabetic rats. S S; S M; P S L S; S S; S B; V P Int J Biol Macromol; 2017 Feb; 95():1190-1198. PubMed ID: 27825822 [TBL] [Abstract][Full Text] [Related]
6. Anti-hyperglycemic activity of selenium nanoparticles in streptozotocin-induced diabetic rats. Al-Quraishy S; Dkhil MA; Abdel Moneim AE Int J Nanomedicine; 2015; 10():6741-56. PubMed ID: 26604749 [TBL] [Abstract][Full Text] [Related]
8. Silybin nanoparticles for liver cancer: development, optimization and in vitro - in vivo evaluation. Zhang H; Wang CB; Liu JL J BUON; 2016; 21(3):633-44. PubMed ID: 27569084 [TBL] [Abstract][Full Text] [Related]
9. Influence of microencapsulation method and peptide loading on formulation of poly(lactide-co-glycolide) insulin nanoparticles. Kumar PS; Ramakrishna S; Saini TR; Diwan PV Pharmazie; 2006 Jul; 61(7):613-7. PubMed ID: 16889069 [TBL] [Abstract][Full Text] [Related]
10. A newly developed silymarin nanoformulation as a potential antidiabetic agent in experimental diabetes. El-Far YM; Zakaria MM; Gabr MM; El Gayar AM; El-Sherbiny IM; Eissa LA Nanomedicine (Lond); 2016 Oct; 11(19):2581-602. PubMed ID: 27623396 [TBL] [Abstract][Full Text] [Related]
11. Chitosan-stabilized selenium nanoparticles alleviate cardio-hepatic damage in type 2 diabetes mellitus model via regulation of caspase, Bax/Bcl-2, and Fas/FasL-pathway. Mohamed AA; Khater SI; Hamed Arisha A; Metwally MMM; Mostafa-Hedeab G; El-Shetry ES Gene; 2021 Feb; 768():145288. PubMed ID: 33181259 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of hepatic glucose metabolism via gluconeogenesis and glycogenolysis after oral administration of insulin nanoparticles. Woitiski CB; Neufeld RJ; Soares AF; Figueiredo IV; Veiga FJ; Carvalho RA Drug Dev Ind Pharm; 2012 Dec; 38(12):1441-50. PubMed ID: 22324290 [TBL] [Abstract][Full Text] [Related]
13. BÜCHI nano spray dryer B-90: a promising technology for the production of metformin hydrochloride-loaded alginate-gelatin nanoparticles. Shehata TM; Ibrahima MM Drug Dev Ind Pharm; 2019 Dec; 45(12):1907-1914. PubMed ID: 31621436 [TBL] [Abstract][Full Text] [Related]
14. Solid Lipid Nanoparticles and Chitosan-coated Solid Lipid Nanoparticles as Promising Tool for Silybin Delivery: Formulation, Characterization, and In vitro Evaluation. Piazzini V; Cinci L; D'Ambrosio M; Luceri C; Bilia AR; Bergonzi MC Curr Drug Deliv; 2019; 16(2):142-152. PubMed ID: 30306869 [TBL] [Abstract][Full Text] [Related]
15. Preparation and in vitro/in vivo evaluation of gliclazide loaded Eudragit nanoparticles as a sustained release carriers. Devarajan PV; Sonavane GS Drug Dev Ind Pharm; 2007 Feb; 33(2):101-11. PubMed ID: 17454041 [TBL] [Abstract][Full Text] [Related]
16. In-vivo sustained release of nanoencapsulated ferulic acid and its impact in induced diabetes. Panwar R; Raghuwanshi N; Srivastava AK; Sharma AK; Pruthi V Mater Sci Eng C Mater Biol Appl; 2018 Nov; 92():381-392. PubMed ID: 30184764 [TBL] [Abstract][Full Text] [Related]
17. Nanoemulsions coated with alginate/chitosan as oral insulin delivery systems: preparation, characterization, and hypoglycemic effect in rats. Li X; Qi J; Xie Y; Zhang X; Hu S; Xu Y; Lu Y; Wu W Int J Nanomedicine; 2013; 8():23-32. PubMed ID: 23293517 [TBL] [Abstract][Full Text] [Related]
18. Prolonged antidiabetic effect of zinc-crystallized insulin loaded glycol chitosan nanoparticles in type 1 diabetic rats. Jo HG; Min KH; Nam TH; Na SJ; Park JH; Jeong SY Arch Pharm Res; 2008 Jul; 31(7):918-23. PubMed ID: 18704336 [TBL] [Abstract][Full Text] [Related]
19. In vitro release and in vitro-in vivo correlation for silybin meglumine incorporated into hollow-type mesoporous silica nanoparticles. Cao X; Deng WW; Fu M; Wang L; Tong SS; Wei YW; Xu Y; Su WY; Xu XM; Yu JN Int J Nanomedicine; 2012; 7():753-62. PubMed ID: 22393284 [TBL] [Abstract][Full Text] [Related]
20. Antidiabetogenic efficiency of menthol, improves glucose homeostasis and attenuates pancreatic β-cell apoptosis in streptozotocin-nicotinamide induced experimental rats through ameliorating glucose metabolic enzymes. Muruganathan U; Srinivasan S; Vinothkumar V Biomed Pharmacother; 2017 Aug; 92():229-239. PubMed ID: 28549291 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]