These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 24991934)

  • 1. Modeling Hawaiian ecosystem degradation due to invasive plants under current and future climates.
    Vorsino AE; Fortini LB; Amidon FA; Miller SE; Jacobi JD; Price JP; 'Ohukani'ohi'a Gon S; Koob GA
    PLoS One; 2014; 9(7):e102400. PubMed ID: 24991934
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling Hawaiian ecosystem degradation due to invasive plants under current and future climates.
    Vorsino AE; Fortini LB; Amidon FA; Miller SE; Jacobi JD; Price JP; Gon S'; Koob GA
    PLoS One; 2014; 9(5):e95427. PubMed ID: 24805254
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting habitat suitability and niche dynamics of Dactylorhiza hatagirea and Rheum webbianum in the Himalaya under projected climate change.
    Wani IA; Khan S; Verma S; Al-Misned FA; Shafik HM; El-Serehy HA
    Sci Rep; 2022 Aug; 12(1):13205. PubMed ID: 35915126
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Loss of native herbaceous species due to woody plant encroachment facilitates the establishment of an invasive grass.
    Alofs KM; Fowler NL
    Ecology; 2013 Mar; 94(3):751-60. PubMed ID: 23687900
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using Risk Assessment and Habitat Suitability Models to Prioritise Invasive Species for Management in a Changing Climate.
    Chai SL; Zhang J; Nixon A; Nielsen S
    PLoS One; 2016; 11(10):e0165292. PubMed ID: 27768758
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protected areas offer refuge from invasive species spreading under climate change.
    Gallardo B; Aldridge DC; González-Moreno P; Pergl J; Pizarro M; Pyšek P; Thuiller W; Yesson C; Vilà M
    Glob Chang Biol; 2017 Dec; 23(12):5331-5343. PubMed ID: 28758293
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Native species dispersal reduces community invasibility by increasing species richness and biotic resistance.
    Howeth JG
    J Anim Ecol; 2017 Oct; 86(6):1380-1393. PubMed ID: 28772339
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Next-generation invaders? Hotspots for naturalised sleeper weeds in Australia under future climates.
    Duursma DE; Gallagher RV; Roger E; Hughes L; Downey PO; Leishman MR
    PLoS One; 2013; 8(12):e84222. PubMed ID: 24386353
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling the current and projected distribution of Brazilian peppertree Schinus terebinthifolia Raddi (Anacardiaceae) in the Americas.
    Santos RS; Alencar JBR; Gallo R
    Braz J Biol; 2024; 84():e279769. PubMed ID: 38922189
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Climate change and biological invasions: evidence, expectations, and response options.
    Hulme PE
    Biol Rev Camb Philos Soc; 2017 Aug; 92(3):1297-1313. PubMed ID: 27241717
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Projected distributions and diversity of flightless ground beetles within the Australian Wet Tropics and their environmental correlates.
    Staunton KM; Robson SK; Burwell CJ; Reside AE; Williams SE
    PLoS One; 2014; 9(2):e88635. PubMed ID: 24586362
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A unified approach for quantifying invasibility and degree of invasion.
    Guo Q; Fei S; Dukes JS; Oswalt CM; Iannone BV; Potter KM
    Ecology; 2015 Oct; 96(10):2613-21. PubMed ID: 26649383
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An iterative and targeted sampling design informed by habitat suitability models for detecting focal plant species over extensive areas.
    Wang O; Zachmann LJ; Sesnie SE; Olsson AD; Dickson BG
    PLoS One; 2014; 9(7):e101196. PubMed ID: 25019621
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plant interactions can lead to emergent relationships between plant community diversity, productivity and vulnerability to invasion.
    Trevenen EJ; Veneklaas EJ; Teste FP; Dobrowolski MP; Mucina L; Renton M
    Sci Rep; 2024 Jun; 14(1):13932. PubMed ID: 38886365
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increasing potential risk of a global aquatic invader in Europe in contrast to other continents under future climate change.
    Liu X; Guo Z; Ke Z; Wang S; Li Y
    PLoS One; 2011 Mar; 6(3):e18429. PubMed ID: 21479188
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Will climate change promote future invasions?
    Bellard C; Thuiller W; Leroy B; Genovesi P; Bakkenes M; Courchamp F
    Glob Chang Biol; 2013 Dec; 19(12):3740-8. PubMed ID: 23913552
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluating Potential Distribution of High-Risk Aquatic Invasive Species in the Water Garden and Aquarium Trade at a Global Scale Based on Current Established Populations.
    West AM; Jarnevich CS; Young NE; Fuller PL
    Risk Anal; 2019 May; 39(5):1169-1191. PubMed ID: 30428498
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding the dynamics in distribution of invasive alien plant species under predicted climate change in Western Himalaya.
    Thapa S; Chitale V; Rijal SJ; Bisht N; Shrestha BB
    PLoS One; 2018; 13(4):e0195752. PubMed ID: 29664961
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Double-edged effects of climate change on plant invasions: Ecological niche modeling global distributions of two invasive alien plants.
    Gong X; Chen Y; Wang T; Jiang X; Hu X; Feng J
    Sci Total Environ; 2020 Oct; 740():139933. PubMed ID: 32559529
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shifting the paradigm: The role of introduced plants in the resiliency of terrestrial ecosystems to climate change.
    Kharouba HM
    Glob Chang Biol; 2024 May; 30(5):e17319. PubMed ID: 38804095
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.