These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
101 related articles for article (PubMed ID: 24991950)
1. It's not necessarily all about the delivery in Huntington's disease. Parsons MP; Raymond LA Neuron; 2014 Jul; 83(1):6-8. PubMed ID: 24991950 [TBL] [Abstract][Full Text] [Related]
2. Impaired TrkB receptor signaling underlies corticostriatal dysfunction in Huntington's disease. Plotkin JL; Day M; Peterson JD; Xie Z; Kress GJ; Rafalovich I; Kondapalli J; Gertler TS; Flajolet M; Greengard P; Stavarache M; Kaplitt MG; Rosinski J; Chan CS; Surmeier DJ Neuron; 2014 Jul; 83(1):178-88. PubMed ID: 24991961 [TBL] [Abstract][Full Text] [Related]
5. 7,8-dihydroxyflavone ameliorates cognitive and motor deficits in a Huntington's disease mouse model through specific activation of the PLCγ1 pathway. García-Díaz Barriga G; Giralt A; Anglada-Huguet M; Gaja-Capdevila N; Orlandi JG; Soriano J; Canals JM; Alberch J Hum Mol Genet; 2017 Aug; 26(16):3144-3160. PubMed ID: 28541476 [TBL] [Abstract][Full Text] [Related]
6. Selective reduction of striatal mature BDNF without induction of proBDNF in the zQ175 mouse model of Huntington's disease. Ma Q; Yang J; Li T; Milner TA; Hempstead BL Neurobiol Dis; 2015 Oct; 82():466-477. PubMed ID: 26282324 [TBL] [Abstract][Full Text] [Related]
7. Impaired development of cortico-striatal synaptic connectivity in a cell culture model of Huntington's disease. Buren C; Parsons MP; Smith-Dijak A; Raymond LA Neurobiol Dis; 2016 Mar; 87():80-90. PubMed ID: 26711622 [TBL] [Abstract][Full Text] [Related]
8. TRiC subunits enhance BDNF axonal transport and rescue striatal atrophy in Huntington's disease. Zhao X; Chen XQ; Han E; Hu Y; Paik P; Ding Z; Overman J; Lau AL; Shahmoradian SH; Chiu W; Thompson LM; Wu C; Mobley WC Proc Natl Acad Sci U S A; 2016 Sep; 113(38):E5655-64. PubMed ID: 27601642 [TBL] [Abstract][Full Text] [Related]
9. Functional interactions within striatal microcircuit in animal models of Huntington's disease. Ghiglieri V; Bagetta V; Calabresi P; Picconi B Neuroscience; 2012 Jun; 211():165-84. PubMed ID: 21756979 [TBL] [Abstract][Full Text] [Related]
10. Inactivation of adenosine A2A receptors reverses working memory deficits at early stages of Huntington's disease models. Li W; Silva HB; Real J; Wang YM; Rial D; Li P; Payen MP; Zhou Y; Muller CE; Tomé AR; Cunha RA; Chen JF Neurobiol Dis; 2015 Jul; 79():70-80. PubMed ID: 25892655 [TBL] [Abstract][Full Text] [Related]
11. Divergent regulatory mechanisms governing BDNF mRNA expression in cerebral cortex and substantia nigra in response to striatal target ablation. Rite I; Machado A; Cano J; Venero JL Exp Neurol; 2005 Mar; 192(1):142-55. PubMed ID: 15698628 [TBL] [Abstract][Full Text] [Related]
12. Fingolimod (FTY720) enhances hippocampal synaptic plasticity and memory in Huntington's disease by preventing p75NTR up-regulation and astrocyte-mediated inflammation. Miguez A; García-Díaz Barriga G; Brito V; Straccia M; Giralt A; Ginés S; Canals JM; Alberch J Hum Mol Genet; 2015 Sep; 24(17):4958-70. PubMed ID: 26063761 [TBL] [Abstract][Full Text] [Related]
13. AAV1/2-mediated BDNF gene therapy in a transgenic rat model of Huntington's disease. Connor B; Sun Y; von Hieber D; Tang SK; Jones KS; Maucksch C Gene Ther; 2016 Mar; 23(3):283-95. PubMed ID: 26704721 [TBL] [Abstract][Full Text] [Related]
14. Relationship between BDNF expression in major striatal afferents, striatum morphology and motor behavior in the R6/2 mouse model of Huntington's disease. Samadi P; Boutet A; Rymar VV; Rawal K; Maheux J; Kvann JC; Tomaszewski M; Beaubien F; Cloutier JF; Levesque D; Sadikot AF Genes Brain Behav; 2013 Feb; 12(1):108-24. PubMed ID: 23006318 [TBL] [Abstract][Full Text] [Related]
15. Inhibition of apoptosis signal-regulating kinase 1 reduces endoplasmic reticulum stress and nuclear huntingtin fragments in a mouse model of Huntington disease. Cho KJ; Lee BI; Cheon SY; Kim HW; Kim HJ; Kim GW Neuroscience; 2009 Nov; 163(4):1128-34. PubMed ID: 19646509 [TBL] [Abstract][Full Text] [Related]
16. Connectivity-based segmentation of the striatum in Huntington's disease: vulnerability of motor pathways. Bohanna I; Georgiou-Karistianis N; Egan GF Neurobiol Dis; 2011 Jun; 42(3):475-81. PubMed ID: 21382492 [TBL] [Abstract][Full Text] [Related]
17. The corticostriatal pathway in Huntington's disease. Cepeda C; Wu N; André VM; Cummings DM; Levine MS Prog Neurobiol; 2007 Apr; 81(5-6):253-71. PubMed ID: 17169479 [TBL] [Abstract][Full Text] [Related]
18. Reduced activity of cortico-striatal fibres in the R6/2 mouse model of Huntington's disease. Traficante A; Riozzi B; Cannella M; Rampello L; Squitieri F; Battaglia G Neuroreport; 2007 Dec; 18(18):1997-2000. PubMed ID: 18007201 [TBL] [Abstract][Full Text] [Related]
19. Intrastriatal CERE-120 (AAV-Neurturin) protects striatal and cortical neurons and delays motor deficits in a transgenic mouse model of Huntington's disease. Ramaswamy S; McBride JL; Han I; Berry-Kravis EM; Zhou L; Herzog CD; Gasmi M; Bartus RT; Kordower JH Neurobiol Dis; 2009 Apr; 34(1):40-50. PubMed ID: 19150499 [TBL] [Abstract][Full Text] [Related]
20. Overexpression of BDNF and Full-Length TrkB Receptor Ameliorate Striatal Neural Survival in Huntington's Disease. Silva A; Naia L; Dominguez A; Ribeiro M; Rodrigues J; Vieira OV; Lessmann V; Rego AC Neurodegener Dis; 2015; 15(4):207-18. PubMed ID: 25896770 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]