These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 24992249)
1. On robustness and power of the likelihood-ratio test as a model test of the linear logistic test model. Hohensinn C; Kubinger KD; Reif M J Appl Meas; 2014; 15(3):252-66. PubMed ID: 24992249 [TBL] [Abstract][Full Text] [Related]
2. Performance of the likelihood ratio difference (G2 Diff) test for detecting unidimensionality in applications of the multidimensional Rasch model. Harrell-Williams L; Wolfe EW J Appl Meas; 2014; 15(3):267-75. PubMed ID: 24992250 [TBL] [Abstract][Full Text] [Related]
3. Loglinear representations of multivariate Bernoulli Rasch models. Hessen DJ Br J Math Stat Psychol; 2011 May; 64(Pt 2):337-54. PubMed ID: 21492137 [TBL] [Abstract][Full Text] [Related]
4. Estimation of maximal reliability for multiple-component instruments in multilevel designs. Raykov T; Penev S Br J Math Stat Psychol; 2009 Feb; 62(Pt 1):129-42. PubMed ID: 18001517 [TBL] [Abstract][Full Text] [Related]
5. Applying the Rasch sampler to identify aberrant responding through person fit statistics under fixed nominal α-level. Spoden C; Fleischer J; Leutner D J Appl Meas; 2014; 15(3):276-91. PubMed ID: 24992251 [TBL] [Abstract][Full Text] [Related]
6. Using LinLog and FACETS to model item components in the LLTM. Kline TL; Schmidt KM; Bowles RP J Appl Meas; 2006; 7(1):74-91. PubMed ID: 16385152 [TBL] [Abstract][Full Text] [Related]
7. A critique of Rasch residual fit statistics. Karabatsos G J Appl Meas; 2000; 1(2):152-76. PubMed ID: 12029176 [TBL] [Abstract][Full Text] [Related]
8. Heteroscedastic one-factor models and marginal maximum likelihood estimation. Hessen DJ; Dolan CV Br J Math Stat Psychol; 2009 Feb; 62(Pt 1):57-77. PubMed ID: 17935662 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of global testing procedures for item fit to the Rasch model. Suárez-Falcón JC; Glas CA Br J Math Stat Psychol; 2003 May; 56(Pt 1):127-43. PubMed ID: 12803827 [TBL] [Abstract][Full Text] [Related]
10. A comparison of statistical selection strategies for univariate and bivariate log-linear models. Moses T; Holland PW Br J Math Stat Psychol; 2010 Nov; 63(Pt 3):557-74. PubMed ID: 20030964 [TBL] [Abstract][Full Text] [Related]
11. A Method of Q-Matrix Validation for the Linear Logistic Test Model. Baghaei P; Hohensinn C Front Psychol; 2017; 8():897. PubMed ID: 28611721 [TBL] [Abstract][Full Text] [Related]
12. Marginal likelihood inference for a model for item responses and response times. Glas CA; van der Linden WJ Br J Math Stat Psychol; 2010 Nov; 63(Pt 3):603-26. PubMed ID: 20109271 [TBL] [Abstract][Full Text] [Related]
13. Power equivalence in structural equation modelling. von Oertzen T Br J Math Stat Psychol; 2010 May; 63(Pt 2):257-72. PubMed ID: 19527562 [TBL] [Abstract][Full Text] [Related]
14. Diagnosing item score patterns on a test using item response theory-based person-fit statistics. Meijer RR Psychol Methods; 2003 Mar; 8(1):72-87. PubMed ID: 12741674 [TBL] [Abstract][Full Text] [Related]
15. Likelihood ratio testing of variance components in the linear mixed-effects model using restricted maximum likelihood. Morrell CH Biometrics; 1998 Dec; 54(4):1560-8. PubMed ID: 9883552 [TBL] [Abstract][Full Text] [Related]
16. Likelihood-based hypothesis tests for brain activation detection from MRI data disturbed by colored noise: a simulation study. den Dekker AJ; Poot DH; Bos R; Sijbers J IEEE Trans Med Imaging; 2009 Feb; 28(2):287-96. PubMed ID: 19188115 [TBL] [Abstract][Full Text] [Related]
17. Permutation-based variance component test in generalized linear mixed model with application to multilocus genetic association study. Zeng P; Zhao Y; Li H; Wang T; Chen F BMC Med Res Methodol; 2015 Apr; 15():37. PubMed ID: 25897803 [TBL] [Abstract][Full Text] [Related]
18. Evaluating Testing, Profile Likelihood Confidence Interval Estimation, and Model Comparisons for Item Covariate Effects in Linear Logistic Test Models. Cho SJ; De Boeck P; Lee WY Appl Psychol Meas; 2017 Jul; 41(5):353-371. PubMed ID: 29881097 [TBL] [Abstract][Full Text] [Related]
19. A comparison of three polytomous item response theory models in the context of testlet scoring. Cook KF; Dodd BG; Fitzpatrick SJ J Outcome Meas; 1999; 3(1):1-20. PubMed ID: 10063769 [TBL] [Abstract][Full Text] [Related]
20. Testing and modelling non-normality within the one-factor model. Molenaar D; Dolan CV; Verhelst ND Br J Math Stat Psychol; 2010 May; 63(Pt 2):293-317. PubMed ID: 19796474 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]