These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
257 related articles for article (PubMed ID: 24992489)
1. Water oxidation by a nickel-glycine catalyst. Wang D; Ghirlanda G; Allen JP J Am Chem Soc; 2014 Jul; 136(29):10198-201. PubMed ID: 24992489 [TBL] [Abstract][Full Text] [Related]
2. A Robust Molecular Catalyst Generated In Situ for Photo- and Electrochemical Water Oxidation. Younus HA; Ahmad N; Chughtai AH; Vandichel M; Busch M; Van Hecke K; Yusubov M; Song S; Verpoort F ChemSusChem; 2017 Mar; 10(5):862-875. PubMed ID: 27921384 [TBL] [Abstract][Full Text] [Related]
3. In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Kanan MW; Nocera DG Science; 2008 Aug; 321(5892):1072-5. PubMed ID: 18669820 [TBL] [Abstract][Full Text] [Related]
4. Solar water oxidation using nickel-borate coupled BiVO4 photoelectrodes. Choi SK; Choi W; Park H Phys Chem Chem Phys; 2013 May; 15(17):6499-507. PubMed ID: 23529529 [TBL] [Abstract][Full Text] [Related]
5. Metal-polypyridyl catalysts for electro- and photochemical reduction of water to hydrogen. Zee DZ; Chantarojsiri T; Long JR; Chang CJ Acc Chem Res; 2015 Jul; 48(7):2027-36. PubMed ID: 26101803 [TBL] [Abstract][Full Text] [Related]
6. Efficient chemical and visible-light-driven water oxidation using nickel complexes and salts as precatalysts. Chen G; Chen L; Ng SM; Lau TC ChemSusChem; 2014 Jan; 7(1):127-34. PubMed ID: 24155063 [TBL] [Abstract][Full Text] [Related]
7. Solar fuels via artificial photosynthesis. Gust D; Moore TA; Moore AL Acc Chem Res; 2009 Dec; 42(12):1890-8. PubMed ID: 19902921 [TBL] [Abstract][Full Text] [Related]
8. Electrocatalytic Water Oxidation Promoted by 3 D Nanoarchitectured Turbostratic δ-MnO Zhang B; Li Y; Valvo M; Fan L; Daniel Q; Zhang P; Wang L; Sun L ChemSusChem; 2017 Nov; 10(22):4472-4478. PubMed ID: 28675680 [TBL] [Abstract][Full Text] [Related]
9. Minimal proton channel enables H2 oxidation and production with a water-soluble nickel-based catalyst. Dutta A; Lense S; Hou J; Engelhard MH; Roberts JA; Shaw WJ J Am Chem Soc; 2013 Dec; 135(49):18490-6. PubMed ID: 24206187 [TBL] [Abstract][Full Text] [Related]
10. Visible-light photoredox catalysis: selective reduction of carbon dioxide to carbon monoxide by a nickel N-heterocyclic carbene-isoquinoline complex. Thoi VS; Kornienko N; Margarit CG; Yang P; Chang CJ J Am Chem Soc; 2013 Sep; 135(38):14413-24. PubMed ID: 24033186 [TBL] [Abstract][Full Text] [Related]
11. Uncovering structure-activity relationships in manganese-oxide-based heterogeneous catalysts for efficient water oxidation. Indra A; Menezes PW; Driess M ChemSusChem; 2015 Mar; 8(5):776-85. PubMed ID: 25641823 [TBL] [Abstract][Full Text] [Related]
12. A Co(II)-Ru(II) dyad relevant to light-driven water oxidation catalysis. López AM; Natali M; Pizzolato E; Chiorboli C; Bonchio M; Sartorel A; Scandola F Phys Chem Chem Phys; 2014 Jun; 16(24):12000-7. PubMed ID: 24664104 [TBL] [Abstract][Full Text] [Related]
13. Electrodeposited cobalt-sulfide catalyst for electrochemical and photoelectrochemical hydrogen generation from water. Sun Y; Liu C; Grauer DC; Yano J; Long JR; Yang P; Chang CJ J Am Chem Soc; 2013 Nov; 135(47):17699-702. PubMed ID: 24219808 [TBL] [Abstract][Full Text] [Related]
14. Nickel Confined in the Interlayer Region of Birnessite: an Active Electrocatalyst for Water Oxidation. Thenuwara AC; Cerkez EB; Shumlas SL; Attanayake NH; McKendry IG; Frazer L; Borguet E; Kang Q; Remsing RC; Klein ML; Zdilla MJ; Strongin DR Angew Chem Int Ed Engl; 2016 Aug; 55(35):10381-5. PubMed ID: 27151204 [TBL] [Abstract][Full Text] [Related]
15. Biomimetic and microbial approaches to solar fuel generation. Magnuson A; Anderlund M; Johansson O; Lindblad P; Lomoth R; Polivka T; Ott S; Stensjö K; Styring S; Sundström V; Hammarström L Acc Chem Res; 2009 Dec; 42(12):1899-909. PubMed ID: 19757805 [TBL] [Abstract][Full Text] [Related]
16. Robust photogeneration of H2 in water using semiconductor nanocrystals and a nickel catalyst. Han Z; Qiu F; Eisenberg R; Holland PL; Krauss TD Science; 2012 Dec; 338(6112):1321-4. PubMed ID: 23138979 [TBL] [Abstract][Full Text] [Related]
17. Photoelectrochemical water oxidation efficiency of a core/shell array photoanode enhanced by a dual suppression strategy. He W; Yang Y; Wang L; Yang J; Xiang X; Yan D; Li F ChemSusChem; 2015 May; 8(9):1568-76. PubMed ID: 25711390 [TBL] [Abstract][Full Text] [Related]
18. Moving protons with pendant amines: proton mobility in a nickel catalyst for oxidation of hydrogen. O'Hagan M; Shaw WJ; Raugei S; Chen S; Yang JY; Kilgore UJ; DuBois DL; Bullock RM J Am Chem Soc; 2011 Sep; 133(36):14301-12. PubMed ID: 21595478 [TBL] [Abstract][Full Text] [Related]
19. Solar-Driven H2 O2 Generation From H2 O and O2 Using Earth-Abundant Mixed-Metal Oxide@Carbon Nitride Photocatalysts. Wang R; Pan K; Han D; Jiang J; Xiang C; Huang Z; Zhang L; Xiang X ChemSusChem; 2016 Sep; 9(17):2470-9. PubMed ID: 27484581 [TBL] [Abstract][Full Text] [Related]
20. Electrocatalytic Water Oxidation by a Water-Soluble Nickel Porphyrin Complex at Neutral pH with Low Overpotential. Han Y; Wu Y; Lai W; Cao R Inorg Chem; 2015 Jun; 54(11):5604-13. PubMed ID: 25985258 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]