These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

68 related articles for article (PubMed ID: 24992533)

  • 1. Evaluation of rhizobacterial indicators of tobacco black root rot suppressiveness in farmers' fields.
    Kyselková M; Almario J; Kopecký J; Ságová-Marečková M; Haurat J; Muller D; Grundmann GL; Moënne-Loccoz Y
    Environ Microbiol Rep; 2014 Aug; 6(4):346-53. PubMed ID: 24992533
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of rhizobacterial community composition in soil suppressive or conducive to tobacco black root rot disease.
    Kyselková M; Kopecký J; Frapolli M; Défago G; Ságová-Marecková M; Grundmann GL; Moënne-Loccoz Y
    ISME J; 2009 Oct; 3(10):1127-38. PubMed ID: 19554036
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic diversity and biocontrol potential of fluorescent pseudomonads producing phloroglucinols and hydrogen cyanide from Swiss soils naturally suppressive or conducive to Thielaviopsis basicola-mediated black root rot of tobacco.
    Ramette A; Moënne-Loccoz Y; Défago G
    FEMS Microbiol Ecol; 2006 Mar; 55(3):369-81. PubMed ID: 16466376
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rhizosphere ecology and phytoprotection in soils naturally suppressive to Thielaviopsis black root rot of tobacco.
    Almario J; Muller D; Défago G; Moënne-Loccoz Y
    Environ Microbiol; 2014 Jul; 16(7):1949-60. PubMed ID: 24650207
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rhizosphere bacterial communities associated with disease suppressiveness stages of take-all decline in wheat monoculture.
    Sanguin H; Sarniguet A; Gazengel K; Moënne-Loccoz Y; Grundmann GL
    New Phytol; 2009 Nov; 184(3):694-707. PubMed ID: 19732350
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prevalence of fluorescent pseudomonads producing antifungal phloroglucinols and/or hydrogen cyanide in soils naturally suppressive or conducive to tobacco black root rot.
    Ramette A; Moënne-Loccoz Y; Défago G
    FEMS Microbiol Ecol; 2003 May; 44(1):35-43. PubMed ID: 19719649
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new DGGE protocol targeting 2,4-diacetylphloroglucinol biosynthetic gene phlD from phylogenetically contrasted biocontrol pseudomonads for assessment of disease-suppressive soils.
    Frapolli M; Moënne-Loccoz Y; Meyer J; Défago G
    FEMS Microbiol Ecol; 2008 Jun; 64(3):468-81. PubMed ID: 18393988
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Soil suppressiveness to fusarium disease: shifts in root microbiome associated with reduction of pathogen root colonization.
    Klein E; Ofek M; Katan J; Minz D; Gamliel A
    Phytopathology; 2013 Jan; 103(1):23-33. PubMed ID: 22950737
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differences in Soil Microbial Community Composition Between Suppressive and Root Rot-Conducive in Tobacco Fields.
    Ding Y; Chen Y; Lin Z; Tuo Y; Li H; Wang Y
    Curr Microbiol; 2021 Feb; 78(2):624-633. PubMed ID: 33394085
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Soil suppressiveness to Rhizoctonia solani and microbial diversity.
    Bakker Y; Van Loon FM; Schneider JH
    Commun Agric Appl Biol Sci; 2005; 70(3):29-33. PubMed ID: 16637155
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of 2,4-diacetylphloroglucinol-producing fluorescent Pseudomonas spp. in the defense of plant roots.
    Weller DM; Landa BB; Mavrodi OV; Schroeder KL; De La Fuente L; Blouin Bankhead S; Allende Molar R; Bonsall RF; Mavrodi DV; Thomashow LS
    Plant Biol (Stuttg); 2007 Jan; 9(1):4-20. PubMed ID: 17058178
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pseudomonas protegens sp. nov., widespread plant-protecting bacteria producing the biocontrol compounds 2,4-diacetylphloroglucinol and pyoluteorin.
    Ramette A; Frapolli M; Fischer-Le Saux M; Gruffaz C; Meyer JM; Défago G; Sutra L; Moënne-Loccoz Y
    Syst Appl Microbiol; 2011 May; 34(3):180-8. PubMed ID: 21392918
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a 9600-clone procedure for oligonucleotide fingerprinting of rRNA genes: utilization to identify soil bacterial rRNA genes that correlate in abundance with the development of avocado root rot.
    Bent E; Yin B; Figueroa A; Ye J; Fu Q; Liu Z; McDonald V; Jeske D; Jiang T; Borneman J
    J Microbiol Methods; 2006 Oct; 67(1):171-80. PubMed ID: 16712989
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms of natural soil suppressiveness to soilborne diseases.
    Mazzola M
    Antonie Van Leeuwenhoek; 2002 Aug; 81(1-4):557-64. PubMed ID: 12448751
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Composition of microbial communities in hexachlorocyclohexane (HCH) contaminated soils from Spain revealed with a habitat-specific microarray.
    Neufeld JD; Mohn WW; de Lorenzo V
    Environ Microbiol; 2006 Jan; 8(1):126-40. PubMed ID: 16343328
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biological control of take-all by fluorescent Pseudomonas spp. from Chinese wheat fields.
    Yang MM; Mavrodi DV; Mavrodi OV; Bonsall RF; Parejko JA; Paulitz TC; Thomashow LS; Yang HT; Weller DM; Guo JH
    Phytopathology; 2011 Dec; 101(12):1481-91. PubMed ID: 22070279
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microbial populations responsible for specific soil suppressiveness to plant pathogens.
    Weller DM; Raaijmakers JM; Gardener BB; Thomashow LS
    Annu Rev Phytopathol; 2002; 40():309-48. PubMed ID: 12147763
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bacterial rRNA genes associated with soil suppressiveness against the plant-parasitic nematode Heterodera schachtii.
    Yin B; Valinsky L; Gao X; Becker JO; Borneman J
    Appl Environ Microbiol; 2003 Mar; 69(3):1573-80. PubMed ID: 12620845
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of plant species on population dynamics, genotypic diversity and antibiotic production in the rhizosphere by indigenous Pseudomonas spp.
    Bergsma-Vlami M; Prins ME; Raaijmakers JM
    FEMS Microbiol Ecol; 2005 Mar; 52(1):59-69. PubMed ID: 16329893
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Is diversification history of maize influencing selection of soil bacteria by roots?
    Bouffaud ML; Kyselková M; Gouesnard B; Grundmann G; Muller D; Moënne-Loccoz Y
    Mol Ecol; 2012 Jan; 21(1):195-206. PubMed ID: 22126532
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.