These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 24992696)

  • 1. Ultrasensitive chemical sensing through facile tuning defects and functional groups in reduced graphene oxide.
    Cui S; Pu H; Mattson EC; Wen Z; Chang J; Hou Y; Hirschmugl CJ; Chen J
    Anal Chem; 2014 Aug; 86(15):7516-22. PubMed ID: 24992696
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrafast and sensitive room temperature NH3 gas sensors based on chemically reduced graphene oxide.
    Hu N; Yang Z; Wang Y; Zhang L; Wang Y; Huang X; Wei H; Wei L; Zhang Y
    Nanotechnology; 2014 Jan; 25(2):025502. PubMed ID: 24334417
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Observation of Switchable Dual-Conductive Channels and Related Nitric Oxide Gas-Sensing Properties in the N-rGO/ZnO Heterogeneous Structure.
    Qiu J; Hu X; Min X; Quan W; Tian R; Ji P; Zheng H; Qin W; Wang H; Pan T; Cheng S; Chen X; Zhang W; Wang X
    ACS Appl Mater Interfaces; 2020 Apr; 12(17):19755-19767. PubMed ID: 32242657
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional mesoporous graphene aerogel-supported SnO2 nanocrystals for high-performance NO2 gas sensing at low temperature.
    Li L; He S; Liu M; Zhang C; Chen W
    Anal Chem; 2015 Feb; 87(3):1638-45. PubMed ID: 25556377
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Room temperature NO2 sensing: what advantage does the rGO-NiO nanocomposite have over pristine NiO?
    Zhang J; Zeng D; Zhao S; Wu J; Xu K; Zhu Q; Zhang G; Xie C
    Phys Chem Chem Phys; 2015 Jun; 17(22):14903-11. PubMed ID: 25982556
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flower-like In
    Liu J; Li S; Zhang B; Wang Y; Gao Y; Liang X; Wang Y; Lu G
    J Colloid Interface Sci; 2017 Oct; 504():206-213. PubMed ID: 28551514
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Confined Formation of Ultrathin ZnO Nanorods/Reduced Graphene Oxide Mesoporous Nanocomposites for High-Performance Room-Temperature NO
    Xia Y; Wang J; Xu JL; Li X; Xie D; Xiang L; Komarneni S
    ACS Appl Mater Interfaces; 2016 Dec; 8(51):35454-35463. PubMed ID: 27966870
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NO
    Bhati VS; Sheela D; Roul B; Raliya R; Biswas P; Kumar M; Roy MS; Nanda KK; Krupanidhi SB; Kumar M
    Nanotechnology; 2019 May; 30(22):224001. PubMed ID: 30699385
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemically modified graphene films for high-performance optical NO2 sensors.
    Xing F; Zhang S; Yang Y; Jiang W; Liu Z; Zhu S; Yuan X
    Analyst; 2016 Aug; 141(15):4725-32. PubMed ID: 27265308
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fully printed, rapid-response sensors based on chemically modified graphene for detecting NO2 at room temperature.
    Huang L; Wang Z; Zhang J; Pu J; Lin Y; Xu S; Shen L; Chen Q; Shi W
    ACS Appl Mater Interfaces; 2014 May; 6(10):7426-33. PubMed ID: 24806241
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Additive-free synthesis of In₂O₃ cubes embedded into graphene sheets and their enhanced NO₂ sensing performance at room temperature.
    Yang W; Wan P; Zhou X; Hu J; Guan Y; Feng L
    ACS Appl Mater Interfaces; 2014 Dec; 6(23):21093-100. PubMed ID: 25399743
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent progress in applications of graphene oxide for gas sensing: A review.
    Toda K; Furue R; Hayami S
    Anal Chim Acta; 2015 Jun; 878():43-53. PubMed ID: 26002325
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of amino substituents on the enhanced ammonia sensing performance of PcCo/rGO hybrids.
    Wang B; Wang X; Li X; Guo Z; Zhou X; Wu Y
    RSC Adv; 2018 Dec; 8(72):41280-41287. PubMed ID: 35559332
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anchoring ultrafine Pd nanoparticles and SnO
    Wang Z; Zhang T; Zhao C; Han T; Fei T; Liu S; Lu G
    J Colloid Interface Sci; 2018 Mar; 514():599-608. PubMed ID: 29306190
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Supramolecular fabrication of multilevel graphene-based gas sensors with high NO2 sensibility.
    Chen Z; Umar A; Wang S; Wang Y; Tian T; Shang Y; Fan Y; Qi Q; Xu D; Jiang L
    Nanoscale; 2015 Jun; 7(22):10259-66. PubMed ID: 25990644
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Reduced GO-Graphene Hybrid Gas Sensor for Ultra-Low Concentration Ammonia Detection.
    Wang C; Lei S; Li X; Guo S; Cui P; Wei X; Liu W; Liu H
    Sensors (Basel); 2018 Sep; 18(9):. PubMed ID: 30231522
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of Cu
    Huang M; Wang Y; Ying S; Wu Z; Liu W; Chen D; Peng C
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33799533
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Graphene-Modified ZnO Nanostructures for Low-Temperature NO
    Qu G; Fan G; Zhou M; Rong X; Li T; Zhang R; Sun J; Chen D
    ACS Omega; 2019 Feb; 4(2):4221-4232. PubMed ID: 31459630
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly Sensitive, Selective, and Flexible NO
    Li F; Peng H; Xia D; Yang J; Yang K; Yin F; Yuan W
    ACS Appl Mater Interfaces; 2019 Mar; 11(9):9309-9316. PubMed ID: 30758937
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering SnO
    Zheng S; Sun J; Hao J; Sun Q; Wan P; Li Y; Zhou X; Yuan Y; Zhang X; Wang Y
    Nanotechnology; 2021 Apr; 32(15):155505. PubMed ID: 33361555
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.