These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
190 related articles for article (PubMed ID: 24992972)
1. 3D-printed microfluidic microdissector for high-throughput studies of cellular aging. Spivey EC; Xhemalce B; Shear JB; Finkelstein IJ Anal Chem; 2014 Aug; 86(15):7406-12. PubMed ID: 24992972 [TBL] [Abstract][Full Text] [Related]
2. A Microfluidic Device for Massively Parallel, Whole-lifespan Imaging of Single Fission Yeast Cells. Jones SK; Spivey EC; Rybarski JR; Finkelstein IJ Bio Protoc; 2018 Apr; 8(7):. PubMed ID: 29770351 [TBL] [Abstract][Full Text] [Related]
3. A high-throughput microfluidic diploid yeast long-term culturing (DYLC) chip capable of bud reorientation and concerted daughter dissection for replicative lifespan determination. Wang Y; Zhu Z; Liu K; Xiao Q; Geng Y; Xu F; Ouyang S; Zheng K; Fan Y; Jin N; Zhao X; Marchisio MA; Pan D; Huang QA J Nanobiotechnology; 2022 Mar; 20(1):171. PubMed ID: 35361237 [TBL] [Abstract][Full Text] [Related]
4. Fabrication of Microfluidic Devices for Continuously Monitoring Yeast Aging. O'Laughlin R; Forrest E; Hasty J; Hao N Bio Protoc; 2023 Aug; 13(15):e4782. PubMed ID: 37575396 [TBL] [Abstract][Full Text] [Related]
5. Measuring the Replicative Lifespan of Saccharomyces cerevisiae Using the HYAA Microfluidic Platform. Yu R; Jo MC; Dang W Methods Mol Biol; 2020; 2144():1-6. PubMed ID: 32410020 [TBL] [Abstract][Full Text] [Related]
6. An aging-independent replicative lifespan in a symmetrically dividing eukaryote. Spivey EC; Jones SK; Rybarski JR; Saifuddin FA; Finkelstein IJ Elife; 2017 Jan; 6():. PubMed ID: 28139976 [TBL] [Abstract][Full Text] [Related]
7. High-throughput analysis of yeast replicative aging using a microfluidic system. Jo MC; Liu W; Gu L; Dang W; Qin L Proc Natl Acad Sci U S A; 2015 Jul; 112(30):9364-9. PubMed ID: 26170317 [TBL] [Abstract][Full Text] [Related]
8. 3D printed mold leachates in PDMS microfluidic devices. de Almeida Monteiro Melo Ferraz M; Nagashima JB; Venzac B; Le Gac S; Songsasen N Sci Rep; 2020 Jan; 10(1):994. PubMed ID: 31969661 [TBL] [Abstract][Full Text] [Related]
10. Aging and cell death in the other yeasts, Schizosaccharomyces pombe and Candida albicans. Lin SJ; Austriaco N FEMS Yeast Res; 2014 Feb; 14(1):119-35. PubMed ID: 24205865 [TBL] [Abstract][Full Text] [Related]
11. Whole lifespan microscopic observation of budding yeast aging through a microfluidic dissection platform. Lee SS; Avalos Vizcarra I; Huberts DH; Lee LP; Heinemann M Proc Natl Acad Sci U S A; 2012 Mar; 109(13):4916-20. PubMed ID: 22421136 [TBL] [Abstract][Full Text] [Related]
12. Emerging 3D printing technologies and methodologies for microfluidic development. Monia Kabandana GK; Zhang T; Chen C Anal Methods; 2022 Aug; 14(30):2885-2906. PubMed ID: 35866586 [TBL] [Abstract][Full Text] [Related]
14. A computer vision and residual neural network (ResNet) combined method for automated and accurate yeast replicative aging analysis of high-throughput microfluidic single-cell images. Xiao Q; Wang Y; Fan J; Yi Z; Hong H; Xie X; Huang QA; Fu J; Ouyang J; Zhao X; Wang Z; Zhu Z Biosens Bioelectron; 2024 Jan; 244():115807. PubMed ID: 37948914 [TBL] [Abstract][Full Text] [Related]
15. Genetic approaches to aging in budding and fission yeasts: new connections and new opportunities. Chen BR; Runge KW Subcell Biochem; 2012; 57():291-314. PubMed ID: 22094427 [TBL] [Abstract][Full Text] [Related]
16. Yeast Replicator: A High-Throughput Multiplexed Microfluidics Platform for Automated Measurements of Single-Cell Aging. Liu P; Young TZ; Acar M Cell Rep; 2015 Oct; 13(3):634-644. PubMed ID: 26456818 [TBL] [Abstract][Full Text] [Related]
17. A Microfluidic Platform for Screening Gene Expression Dynamics across Yeast Strain Libraries. Stasiowski E; O'Laughlin R; Holness S; Csicsery N; Hasty J; Hao N Bio Protoc; 2023 Nov; 13(22):e4883. PubMed ID: 38023791 [TBL] [Abstract][Full Text] [Related]