These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 24992972)

  • 21. Rapid Manufacturing of Multilayered Microfluidic Devices for Organ on a Chip Applications.
    Paoli R; Di Giuseppe D; Badiola-Mateos M; Martinelli E; Lopez-Martinez MJ; Samitier J
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33669434
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fission Yeast Schizosaccharomyces pombe: A Unicellular "Micromammal" Model Organism.
    Vyas A; Freitas AV; Ralston ZA; Tang Z
    Curr Protoc; 2021 Jun; 1(6):e151. PubMed ID: 34101381
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microfluidic technologies for yeast replicative lifespan studies.
    Chen KL; Crane MM; Kaeberlein M
    Mech Ageing Dev; 2017 Jan; 161(Pt B):262-269. PubMed ID: 27015709
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In-air microfluidics enables rapid fabrication of emulsions, suspensions, and 3D modular (bio)materials.
    Visser CW; Kamperman T; Karbaat LP; Lohse D; Karperien M
    Sci Adv; 2018 Jan; 4(1):eaao1175. PubMed ID: 29399628
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Multi-Resin Masked Stereolithography (MSLA) 3D Printing for Rapid and Inexpensive Prototyping of Microfluidic Chips with Integrated Functional Components.
    Ahmed I; Sullivan K; Priye A
    Biosensors (Basel); 2022 Aug; 12(8):. PubMed ID: 36005047
    [TBL] [Abstract][Full Text] [Related]  

  • 26. 3D Printed Microfluidics.
    Nielsen AV; Beauchamp MJ; Nordin GP; Woolley AT
    Annu Rev Anal Chem (Palo Alto Calif); 2020 Jun; 13(1):45-65. PubMed ID: 31821017
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Micro-macro hybrid soft-lithography master (MMHSM) fabrication for lab-on-a-chip applications.
    Park J; Li J; Han A
    Biomed Microdevices; 2010 Apr; 12(2):345-51. PubMed ID: 20049640
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Simple and Versatile 3D Printed Microfluidics Using Fused Filament Fabrication.
    Morgan AJ; Hidalgo San Jose L; Jamieson WD; Wymant JM; Song B; Stephens P; Barrow DA; Castell OK
    PLoS One; 2016; 11(4):e0152023. PubMed ID: 27050661
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Aging, mortality, and the fast growth trade-off of Schizosaccharomyces pombe.
    Nakaoka H; Wakamoto Y
    PLoS Biol; 2017 Jun; 15(6):e2001109. PubMed ID: 28632741
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hierarchical hydrogel microarrays fabricated based on a microfluidic printing platform for high-throughput screening of stem cell lineage specification.
    Yu N; Zhang F; Tang X; Liu Y; Zhang J; Yang B; Wang Q
    Acta Biomater; 2023 Apr; 161():144-153. PubMed ID: 36868445
    [TBL] [Abstract][Full Text] [Related]  

  • 31. 3D-printed microfluidics integrated with optical nanostructured porous aptasensors for protein detection.
    Arshavsky-Graham S; Enders A; Ackerman S; Bahnemann J; Segal E
    Mikrochim Acta; 2021 Feb; 188(3):67. PubMed ID: 33543321
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hybrid Three Dimensionally Printed Paper-Based Microfluidic Platform for Investigating a Cell's Apoptosis and Intracellular Cross-Talk.
    Liu P; Li B; Fu L; Huang Y; Man M; Qi J; Sun X; Kang Q; Shen D; Chen L
    ACS Sens; 2020 Feb; 5(2):464-473. PubMed ID: 32013403
    [TBL] [Abstract][Full Text] [Related]  

  • 33. 3D-printed microfluidic chips with patterned, cell-laden hydrogel constructs.
    Knowlton S; Yu CH; Ersoy F; Emadi S; Khademhosseini A; Tasoglu S
    Biofabrication; 2016 Jun; 8(2):025019. PubMed ID: 27321481
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A fast microfluidic temperature control device for studying microtubule dynamics in fission yeast.
    Velve-Casquillas G; Costa J; Carlier-Grynkorn F; Mayeux A; Tran PT
    Methods Cell Biol; 2010; 97():185-201. PubMed ID: 20719272
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Selective benefits of damage partitioning in unicellular systems and its effects on aging.
    Erjavec N; Cvijovic M; Klipp E; Nyström T
    Proc Natl Acad Sci U S A; 2008 Dec; 105(48):18764-9. PubMed ID: 19020097
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Rapid prototyping for high-pressure microfluidics.
    Rein C; Toner M; Sevenler D
    Sci Rep; 2023 Jan; 13(1):1232. PubMed ID: 36683072
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of four functional biocompatible pressure-sensitive adhesives for rapid prototyping of cell-based lab-on-a-chip and organ-on-a-chip systems.
    Kratz SRA; Eilenberger C; Schuller P; Bachmann B; Spitz S; Ertl P; Rothbauer M
    Sci Rep; 2019 Jun; 9(1):9287. PubMed ID: 31243326
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fission yeast and other yeasts as emergent models to unravel cellular aging in eukaryotes.
    Roux AE; Chartrand P; Ferbeyre G; Rokeach LA
    J Gerontol A Biol Sci Med Sci; 2010 Jan; 65(1):1-8. PubMed ID: 19875745
    [TBL] [Abstract][Full Text] [Related]  

  • 39. STED lithography in microfluidics for 3D thrombocyte aggregation testing.
    Buchegger B; Tanzer A; Posch S; Gabriel C; Klar TA; Jacak J
    J Nanobiotechnology; 2021 Jan; 19(1):23. PubMed ID: 33461577
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A computer vision and residual neural network (ResNet) combined method for automated and accurate yeast replicative aging analysis of high-throughput microfluidic single-cell images.
    Xiao Q; Wang Y; Fan J; Yi Z; Hong H; Xie X; Huang QA; Fu J; Ouyang J; Zhao X; Wang Z; Zhu Z
    Biosens Bioelectron; 2024 Jan; 244():115807. PubMed ID: 37948914
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.