BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 24993029)

  • 1. Genome-wide identification of the Fermentome; genes required for successful and timely completion of wine-like fermentation by Saccharomyces cerevisiae.
    Walker ME; Nguyen TD; Liccioli T; Schmid F; Kalatzis N; Sundstrom JF; Gardner JM; Jiranek V
    BMC Genomics; 2014 Jul; 15(1):552. PubMed ID: 24993029
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of a wine yeast deletion collection reveals genes that influence fermentation performance under low-nitrogen conditions.
    Peter JJ; Watson TL; Walker ME; Gardner JM; Lang TA; Borneman A; Forgan A; Tran T; Jiranek V
    FEMS Yeast Res; 2018 May; 18(3):. PubMed ID: 29425293
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Saccharomyces cerevisiae Gene Expression during Fermentation of Pinot Noir Wines at an Industrially Relevant Scale.
    Reiter T; Montpetit R; Byer S; Frias I; Leon E; Viano R; Mcloughlin M; Halligan T; Hernandez D; Runnebaum R; Montpetit B
    Appl Environ Microbiol; 2021 May; 87(11):. PubMed ID: 33741633
    [No Abstract]   [Full Text] [Related]  

  • 4. Genome-wide identification of genes involved in growth and fermentation activity at low temperature in Saccharomyces cerevisiae.
    Salvadó Z; Ramos-Alonso L; Tronchoni J; Penacho V; García-Ríos E; Morales P; Gonzalez R; Guillamón JM
    Int J Food Microbiol; 2016 Nov; 236():38-46. PubMed ID: 27442849
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Disruption of the cell wall integrity gene ECM33 results in improved fermentation by wine yeast.
    Zhang J; Astorga MA; Gardner JM; Walker ME; Grbin PR; Jiranek V
    Metab Eng; 2018 Jan; 45():255-264. PubMed ID: 29289724
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Natural allelic variations of Saccharomyces cerevisiae impact stuck fermentation due to the combined effect of ethanol and temperature; a QTL-mapping study.
    Marullo P; Durrens P; Peltier E; Bernard M; Mansour C; Dubourdieu D
    BMC Genomics; 2019 Aug; 20(1):680. PubMed ID: 31462217
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of genes affecting glucose catabolism in nitrogen-limited fermentation.
    Gardner JM; McBryde C; Vystavelova A; De Barros Lopes M; Jiranek V
    FEMS Yeast Res; 2005 Jun; 5(9):791-800. PubMed ID: 15925307
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selection and validation of reference genes for quantitative real-time PCR studies during Saccharomyces cerevisiae alcoholic fermentation in the presence of sulfite.
    Nadai C; Campanaro S; Giacomini A; Corich V
    Int J Food Microbiol; 2015 Dec; 215():49-56. PubMed ID: 26325600
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of target genes to control acetate yield during aerobic fermentation with Saccharomyces cerevisiae.
    Curiel JA; Salvadó Z; Tronchoni J; Morales P; Rodrigues AJ; Quirós M; Gonzalez R
    Microb Cell Fact; 2016 Sep; 15(1):156. PubMed ID: 27627879
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Disentangling the genetic bases of Saccharomyces cerevisiae nitrogen consumption and adaptation to low nitrogen environments in wine fermentation.
    Kessi-Pérez EI; Molinet J; Martínez C
    Biol Res; 2020 Jan; 53(1):2. PubMed ID: 31918759
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Appropriate vacuolar acidification in Saccharomyces cerevisiae is associated with efficient high sugar fermentation.
    Nguyen TD; Walker ME; Gardner JM; Jiranek V
    Food Microbiol; 2018 Apr; 70():262-268. PubMed ID: 29173635
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Up-regulation of Retrograde Response in yeast increases glycerol and reduces ethanol during wine fermentation.
    Garrigós V; Vallejo B; Mollà-Martí E; Picazo C; Peltier E; Marullo P; Matallana E; Aranda A
    J Biotechnol; 2024 Jul; 390():28-38. PubMed ID: 38768686
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential adaptation to multi-stressed conditions of wine fermentation revealed by variations in yeast regulatory networks.
    Brion C; Ambroset C; Sanchez I; Legras JL; Blondin B
    BMC Genomics; 2013 Oct; 14():681. PubMed ID: 24094006
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic determinants of volatile-thiol release by Saccharomyces cerevisiae during wine fermentation.
    Howell KS; Klein M; Swiegers JH; Hayasaka Y; Elsey GM; Fleet GH; Høj PB; Pretorius IS; de Barros Lopes MA
    Appl Environ Microbiol; 2005 Sep; 71(9):5420-6. PubMed ID: 16151133
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of mixed Torulaspora delbrueckii-Saccharomyces cerevisiae culture on high-sugar fermentation.
    Bely M; Stoeckle P; Masneuf-Pomarède I; Dubourdieu D
    Int J Food Microbiol; 2008 Mar; 122(3):312-20. PubMed ID: 18262301
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Specific Phenotypic Traits of Starmerella bacillaris Related to Nitrogen Source Consumption and Central Carbon Metabolite Production during Wine Fermentation.
    Englezos V; Cocolin L; Rantsiou K; Ortiz-Julien A; Bloem A; Dequin S; Camarasa C
    Appl Environ Microbiol; 2018 Aug; 84(16):. PubMed ID: 29858207
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of ergosterol and phytosterols on wine alcoholic fermentation with
    Girardi-Piva G; Casalta E; Legras JL; Nidelet T; Pradal M; Macna F; Ferreira D; Ortiz-Julien A; Tesnière C; Galeote V; Mouret JR
    Front Microbiol; 2022; 13():966245. PubMed ID: 36160262
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Saccharomyces cerevisiae Cytosolic Thioredoxins Control Glycolysis, Lipid Metabolism, and Protein Biosynthesis under Wine-Making Conditions.
    Picazo C; McDonagh B; Peinado J; Bárcena JA; Matallana E; Aranda A
    Appl Environ Microbiol; 2019 Apr; 85(7):. PubMed ID: 30683739
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Occurrence and enological properties of two new non-conventional yeasts (Nakazawaea ishiwadae and Lodderomyces elongisporus) in wine fermentations.
    Ruiz J; Ortega N; Martín-Santamaría M; Acedo A; Marquina D; Pascual O; Rozès N; Zamora F; Santos A; Belda I
    Int J Food Microbiol; 2019 Sep; 305():108255. PubMed ID: 31252247
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RNAseq-based transcriptome comparison of Saccharomyces cerevisiae strains isolated from diverse fermentative environments.
    Ibáñez C; Pérez-Torrado R; Morard M; Toft C; Barrio E; Querol A
    Int J Food Microbiol; 2017 Sep; 257():262-270. PubMed ID: 28711856
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.