These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 24993029)

  • 21. Comparative transcriptomic analysis reveals similarities and dissimilarities in Saccharomyces cerevisiae wine strains response to nitrogen availability.
    Barbosa C; García-Martínez J; Pérez-Ortín JE; Mendes-Ferreira A
    PLoS One; 2015; 10(4):e0122709. PubMed ID: 25884705
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ethanol tolerance of sugar transport, and the rectification of stuck wine fermentations.
    Santos J; Sousa MJ; Cardoso H; Inácio J; Silva S; Spencer-Martins I; Leão C
    Microbiology (Reading); 2008 Feb; 154(Pt 2):422-430. PubMed ID: 18227246
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Adaptive response to wine selective pressures shapes the genome of a
    Lairón-Peris M; Castiglioni GL; Routledge SJ; Alonso-Del-Real J; Linney JA; Pitt AR; Melcr J; Goddard AD; Barrio E; Querol A
    Microb Genom; 2021 Aug; 7(8):. PubMed ID: 34448691
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Eukaryote-to-eukaryote gene transfer events revealed by the genome sequence of the wine yeast Saccharomyces cerevisiae EC1118.
    Novo M; Bigey F; Beyne E; Galeote V; Gavory F; Mallet S; Cambon B; Legras JL; Wincker P; Casaregola S; Dequin S
    Proc Natl Acad Sci U S A; 2009 Sep; 106(38):16333-8. PubMed ID: 19805302
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Single nucleotide polymorphisms associated with wine fermentation and adaptation to nitrogen limitation in wild and domesticated yeast strains.
    Kessi-Pérez EI; Acuña E; Bastías C; Fundora L; Villalobos-Cid M; Romero A; Khaiwal S; De Chiara M; Liti G; Salinas F; Martínez C
    Biol Res; 2023 Jul; 56(1):43. PubMed ID: 37507753
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evolution of ecological dominance of yeast species in high-sugar environments.
    Williams KM; Liu P; Fay JC
    Evolution; 2015 Aug; 69(8):2079-93. PubMed ID: 26087012
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Genome-wide identification of Saccharomyces cerevisiae genes required for tolerance to acetic acid.
    Mira NP; Palma M; Guerreiro JF; Sá-Correia I
    Microb Cell Fact; 2010 Oct; 9():79. PubMed ID: 20973990
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Saccharomyces cerevisiae fermentation stress response protein Igd1p/Yfr017p regulates glycogen levels by inhibiting the glycogen debranching enzyme.
    Walkey CJ; Luo Z; Borchers CH; Measday V; van Vuuren HJ
    FEMS Yeast Res; 2011 Sep; 11(6):499-508. PubMed ID: 21585652
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Monitoring stress-related genes during the process of biomass propagation of Saccharomyces cerevisiae strains used for wine making.
    Pérez-Torrado R; Bruno-Bárcena JM; Matallana E
    Appl Environ Microbiol; 2005 Nov; 71(11):6831-7. PubMed ID: 16269716
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Genomic evolution of Saccharomyces cerevisiae under Chinese rice wine fermentation.
    Li Y; Zhang W; Zheng D; Zhou Z; Yu W; Zhang L; Feng L; Liang X; Guan W; Zhou J; Chen J; Lin Z
    Genome Biol Evol; 2014 Sep; 6(9):2516-26. PubMed ID: 25212861
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Decreased ethyl carbamate generation during Chinese rice wine fermentation by disruption of CAR1 in an industrial yeast strain.
    Wu D; Li X; Shen C; Lu J; Chen J; Xie G
    Int J Food Microbiol; 2014 Jun; 180():19-23. PubMed ID: 24769164
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genome-wide study of the adaptation of Saccharomyces cerevisiae to the early stages of wine fermentation.
    Novo M; Mangado A; Quirós M; Morales P; Salvadó Z; Gonzalez R
    PLoS One; 2013; 8(9):e74086. PubMed ID: 24040173
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dynamics of the yeast transcriptome during wine fermentation reveals a novel fermentation stress response.
    Marks VD; Ho Sui SJ; Erasmus D; van der Merwe GK; Brumm J; Wasserman WW; Bryan J; van Vuuren HJ
    FEMS Yeast Res; 2008 Feb; 8(1):35-52. PubMed ID: 18215224
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microsatellite PCR profiling of Saccharomyces cerevisiae strains during wine fermentation.
    Howell KS; Bartowsky EJ; Fleet GH; Henschke PA
    Lett Appl Microbiol; 2004; 38(4):315-20. PubMed ID: 15214732
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Allelic variants of hexose transporter Hxt3p and hexokinases Hxk1p/Hxk2p in strains of Saccharomyces cerevisiae and interspecies hybrids.
    Zuchowska M; Jaenicke E; König H; Claus H
    Yeast; 2015 Nov; 32(11):657-69. PubMed ID: 26202678
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Saccharomyces cerevisiae signature genes for predicting nitrogen deficiency during alcoholic fermentation.
    Mendes-Ferreira A; del Olmo M; García-Martínez J; Jiménez-Martí E; Leão C; Mendes-Faia A; Pérez-Ortín JE
    Appl Environ Microbiol; 2007 Aug; 73(16):5363-9. PubMed ID: 17601813
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A recombinant Saccharomyces cerevisiae strain overproducing mannoproteins stabilizes wine against protein haze.
    Gonzalez-Ramos D; Cebollero E; Gonzalez R
    Appl Environ Microbiol; 2008 Sep; 74(17):5533-40. PubMed ID: 18606802
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanisms of Yeast Adaptation to Wine Fermentations.
    García-Ríos E; Guillamón JM
    Prog Mol Subcell Biol; 2019; 58():37-59. PubMed ID: 30911888
    [TBL] [Abstract][Full Text] [Related]  

  • 39. New malic acid producer strains of Saccharomyces cerevisiae for preserving wine acidity during alcoholic fermentation.
    Vion C; Muro M; Bernard M; Richard B; Valentine F; Yeramian N; Masneuf-Pomarède I; Tempère S; Marullo P
    Food Microbiol; 2023 Jun; 112():104209. PubMed ID: 36906297
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Functional analysis to identify genes in wine yeast adaptation to low-temperature fermentation.
    Salvadó Z; Chiva R; Rozès N; Cordero-Otero R; Guillamón JM
    J Appl Microbiol; 2012 Jul; 113(1):76-88. PubMed ID: 22507142
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.