These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 24993029)

  • 41. Comparative genomic analysis of Saccharomyces cerevisiae yeasts isolated from fermentations of traditional beverages unveils different adaptive strategies.
    Ibáñez C; Pérez-Torrado R; Chiva R; Guillamón JM; Barrio E; Querol A
    Int J Food Microbiol; 2014 Feb; 171():129-35. PubMed ID: 24334254
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Concentration effect of Riesling Icewine juice on yeast performance and wine acidity.
    Pigeau GM; Bozza E; Kaiser K; Inglis DL
    J Appl Microbiol; 2007 Nov; 103(5):1691-8. PubMed ID: 18038457
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Metabolic and transcriptomic response of the wine yeast Saccharomyces cerevisiae strain EC1118 after an oxygen impulse under carbon-sufficient, nitrogen-limited fermentative conditions.
    Orellana M; Aceituno FF; Slater AW; Almonacid LI; Melo F; Agosin E
    FEMS Yeast Res; 2014 May; 14(3):412-24. PubMed ID: 24387769
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Quantitative analysis of wine yeast gene expression profiles under winemaking conditions.
    Varela C; Cárdenas J; Melo F; Agosin E
    Yeast; 2005 Apr; 22(5):369-83. PubMed ID: 15806604
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Evaluation of yeast diversity during wine fermentations with direct inoculation and pied de cuve method at an industrial scale.
    Li E; Liu C; Liu Y
    J Microbiol Biotechnol; 2012 Jul; 22(7):960-6. PubMed ID: 22580315
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Transcriptome analysis reveals the protection mechanism of proanthocyanidins for Saccharomyces cerevisiae during wine fermentation.
    Li J; Zhu K; Zhao H
    Sci Rep; 2020 Apr; 10(1):6676. PubMed ID: 32317674
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effects of GPD1 overexpression in Saccharomyces cerevisiae commercial wine yeast strains lacking ALD6 genes.
    Cambon B; Monteil V; Remize F; Camarasa C; Dequin S
    Appl Environ Microbiol; 2006 Jul; 72(7):4688-94. PubMed ID: 16820460
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Malo-ethanolic fermentation in grape must by recombinant strains of Saccharomyces cerevisiae.
    Volschenk H; Viljoen-Bloom M; Subden RE; van Vuuren HJ
    Yeast; 2001 Jul; 18(10):963-70. PubMed ID: 11447602
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The role of GAP1 gene in the nitrogen metabolism of Saccharomyces cerevisiae during wine fermentation.
    Chiva R; Baiges I; Mas A; Guillamon JM
    J Appl Microbiol; 2009 Jul; 107(1):235-44. PubMed ID: 19302302
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Different genetic responses to oenological conditions between a flocculent wine yeast and its FLO5 deleted strain: Insights from the transcriptome.
    Di Gianvito P; Tesnière C; Suzzi G; Blondin B; Tofalo R
    Food Res Int; 2018 Dec; 114():178-186. PubMed ID: 30361014
    [TBL] [Abstract][Full Text] [Related]  

  • 51. QTL dissection of Lag phase in wine fermentation reveals a new translocation responsible for Saccharomyces cerevisiae adaptation to sulfite.
    Zimmer A; Durand C; Loira N; Durrens P; Sherman DJ; Marullo P
    PLoS One; 2014; 9(1):e86298. PubMed ID: 24489712
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Selection of non-Saccharomyces yeast strains for reducing alcohol levels in wine by sugar respiration.
    Quirós M; Rojas V; Gonzalez R; Morales P
    Int J Food Microbiol; 2014 Jul; 181():85-91. PubMed ID: 24831930
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Comparative transcriptomic approach to investigate differences in wine yeast physiology and metabolism during fermentation.
    Rossouw D; Olivares-Hernandes R; Nielsen J; Bauer FF
    Appl Environ Microbiol; 2009 Oct; 75(20):6600-12. PubMed ID: 19700545
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Performance of industrial strains of Saccharomyces cerevisae during wine fermentation is affected by manipulation strategies based on sporulation.
    Gimren-Alcañiz JV; Matallana E
    Syst Appl Microbiol; 2001 Dec; 24(4):639-44. PubMed ID: 11876372
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Adjustment of trehalose metabolism in wine Saccharomyces cerevisiae strains to modify ethanol yields.
    Rossouw D; Heyns EH; Setati ME; Bosch S; Bauer FF
    Appl Environ Microbiol; 2013 Sep; 79(17):5197-207. PubMed ID: 23793638
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Flocculation and transcriptional adaptation to fermentation conditions in a recombinant wine yeast strain defective for KNR4/SMI1.
    Penacho V; Blondin B; Valero E; Gonzalez R
    Biotechnol Prog; 2012; 28(2):327-36. PubMed ID: 22065482
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Upregulation of ALD3 and GPD1 in Saccharomyces cerevisiae during Icewine fermentation.
    Pigeau GM; Inglis DL
    J Appl Microbiol; 2005; 99(1):112-25. PubMed ID: 15960671
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Stuck at work? Quantitative proteomics of environmental wine yeast strains reveals the natural mechanism of overcoming stuck fermentation.
    Szopinska A; Christ E; Planchon S; König H; Evers D; Renaut J
    Proteomics; 2016 Feb; 16(4):593-608. PubMed ID: 26763469
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Response of wine yeast (Saccharomyces cerevisiae) aldehyde dehydrogenases to acetaldehyde stress during Icewine fermentation.
    Pigeau GM; Inglis DL
    J Appl Microbiol; 2007 Nov; 103(5):1576-86. PubMed ID: 17953569
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Identifying and assessing the impact of wine acid-related genes in yeast.
    Chidi BS; Rossouw D; Bauer FF
    Curr Genet; 2016 Feb; 62(1):149-64. PubMed ID: 26040556
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.