These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 24993115)

  • 1. Identification and expression analysis of salt-responsive genes using a comparative microarray approach in Salix matsudana.
    Liu M; Qiao G; Jiang J; Han X; Sang J; Zhuo R
    Mol Biol Rep; 2014 Oct; 41(10):6555-68. PubMed ID: 24993115
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Uncovering candidate genes responsive to salt stress in Salix matsudana (Koidz) by transcriptomic analysis.
    Chen Y; Jiang Y; Chen Y; Feng W; Liu G; Yu C; Lian B; Zhong F; Zhang J
    PLoS One; 2020; 15(8):e0236129. PubMed ID: 32760076
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Overexpression of the Salix matsudana SmAP2-17 gene improves Arabidopsis salinity tolerance by enhancing the expression of SOS3 and ABI5.
    Chen Y; Dai Y; Li Y; Yang J; Jiang Y; Liu G; Yu C; Zhong F; Lian B; Zhang J
    BMC Plant Biol; 2022 Mar; 22(1):102. PubMed ID: 35255820
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expression profile of miRNAs in Populus cathayana L. and Salix matsudana Koidz under salt stress.
    Zhou J; Liu M; Jiang J; Qiao G; Lin S; Li H; Xie L; Zhuo R
    Mol Biol Rep; 2012 Sep; 39(9):8645-54. PubMed ID: 22718503
    [TBL] [Abstract][Full Text] [Related]  

  • 5. De novo transcriptome and small RNA analysis of two Chinese willow cultivars reveals stress response genes in Salix matsudana.
    Rao G; Sui J; Zeng Y; He C; Duan A; Zhang J
    PLoS One; 2014; 9(10):e109122. PubMed ID: 25275458
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of salt responsive genes using comparative microarray analysis in Upland cotton (Gossypium hirsutum L.).
    Rodriguez-Uribe L; Higbie SM; Stewart JM; Wilkins T; Lindemann W; Sengupta-Gopalan C; Zhang J
    Plant Sci; 2011 Mar; 180(3):461-9. PubMed ID: 21421393
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-wide investigation of the AP2/ERF superfamily and their expression under salt stress in Chinese willow (
    Zhang J; Shi SZ; Jiang Y; Zhong F; Liu G; Yu C; Lian B; Chen Y
    PeerJ; 2021; 9():e11076. PubMed ID: 33954030
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptome analysis of grapevine under salinity and identification of key genes responsible for salt tolerance.
    Das P; Majumder AL
    Funct Integr Genomics; 2019 Jan; 19(1):61-73. PubMed ID: 30046943
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comprehensive analysis of differentially expressed genes and transcriptional regulation induced by salt stress in two contrasting cotton genotypes.
    Peng Z; He S; Gong W; Sun J; Pan Z; Xu F; Lu Y; Du X
    BMC Genomics; 2014 Sep; 15(1):760. PubMed ID: 25189468
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An endophyte from salt-adapted Pokkali rice confers salt-tolerance to a salt-sensitive rice variety and targets a unique pattern of genes in its new host.
    Sampangi-Ramaiah MH; Jagadheesh ; Dey P; Jambagi S; Vasantha Kumari MM; Oelmüller R; Nataraja KN; Venkataramana Ravishankar K; Ravikanth G; Uma Shaanker R
    Sci Rep; 2020 Feb; 10(1):3237. PubMed ID: 32094443
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A homolog of AtCBFs, SmDREB A1-4, positively regulates salt stress tolerance in Arabidopsis thaliana and Salix matsudana.
    Chen Y; Huang Q; Hua X; Zhang Q; Pan W; Liu G; Yu C; Zhong F; Lian B; Zhang J
    Plant Physiol Biochem; 2023 Sep; 202():107963. PubMed ID: 37595402
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of SmEXPA13 expression by SmMYB1R1-L enhances salt tolerance in Salix matsudana Koidz.
    Zhang J; Wang L; Wu D; Zhao H; Gong L; Xu J
    Int J Biol Macromol; 2024 Jun; 270(Pt 1):132292. PubMed ID: 38750858
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Transcriptome analysis of Salix matsudana under cadmium stress].
    Cao J; Li S; He D
    Sheng Wu Gong Cheng Xue Bao; 2020 Jul; 36(7):1365-1377. PubMed ID: 32748594
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptome analysis of smooth cordgrass (Spartina alterniflora Loisel), a monocot halophyte, reveals candidate genes involved in its adaptation to salinity.
    Bedre R; Mangu VR; Srivastava S; Sanchez LE; Baisakh N
    BMC Genomics; 2016 Aug; 17(1):657. PubMed ID: 27542721
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of novel and salt-responsive miRNAs to explore miRNA-mediated regulatory network of salt stress response in radish (Raphanus sativus L.).
    Sun X; Xu L; Wang Y; Yu R; Zhu X; Luo X; Gong Y; Wang R; Limera C; Zhang K; Liu L
    BMC Genomics; 2015 Mar; 16(1):197. PubMed ID: 25888374
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome-wide characterization and identification of Trihelix transcription factors and expression profiling in response to abiotic stresses in Chinese Willow (
    Yang J; Tang Z; Yang W; Huang Q; Wang Y; Huang M; Wei H; Liu G; Lian B; Chen Y; Zhang J
    Front Plant Sci; 2023; 14():1125519. PubMed ID: 36938039
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Morphological and physiological responses of two willow species from different habitats to salt stress.
    Feng S; Ren L; Sun H; Qiao K; Liu S; Zhou A
    Sci Rep; 2020 Oct; 10(1):18228. PubMed ID: 33106524
    [TBL] [Abstract][Full Text] [Related]  

  • 18. De novo transcriptome sequencing and comparative analysis of differentially expressed genes in Gossypium aridum under salt stress.
    Xu P; Liu Z; Fan X; Gao J; Zhang X; Zhang X; Shen X
    Gene; 2013 Aug; 525(1):26-34. PubMed ID: 23651590
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selection of suitable reference genes for quantitative real-time PCR gene expression analysis in Salix matsudana under different abiotic stresses.
    Zhang Y; Han X; Chen S; Zheng L; He X; Liu M; Qiao G; Wang Y; Zhuo R
    Sci Rep; 2017 Jan; 7():40290. PubMed ID: 28120870
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptional profiling of Medicago truncatula under salt stress identified a novel CBF transcription factor MtCBF4 that plays an important role in abiotic stress responses.
    Li D; Zhang Y; Hu X; Shen X; Ma L; Su Z; Wang T; Dong J
    BMC Plant Biol; 2011 Jul; 11():109. PubMed ID: 21718548
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.