These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 24993196)

  • 1. High frequency normal mode statistics in a shallow water waveguide: the effect of random linear internal waves.
    Raghukumar K; Colosi JA
    J Acoust Soc Am; 2014 Jul; 136(1):66-79. PubMed ID: 24993196
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-frequency normal-mode statistics in shallow water: the combined effect of random surface and internal waves.
    Raghukumar K; Colosi JA
    J Acoust Soc Am; 2015 May; 137(5):2950-61. PubMed ID: 25994721
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Statistics of low-frequency normal-mode amplitudes in an ocean with random sound-speed perturbations: shallow-water environments.
    Colosi JA; Duda TF; Morozov AK
    J Acoust Soc Am; 2012 Feb; 131(2):1749-61. PubMed ID: 22352603
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Statistics of normal mode amplitudes in an ocean with random sound-speed perturbations: cross-mode coherence and mean intensity.
    Colosi JA; Morozov AK
    J Acoust Soc Am; 2009 Sep; 126(3):1026-35. PubMed ID: 19739715
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ray-based description of mode coupling by sound speed fluctuations in the ocean.
    Virovlyansky AL
    J Acoust Soc Am; 2015 Apr; 137(4):2137-47. PubMed ID: 25920863
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coupled mode transport theory for sound transmission through an ocean with random sound speed perturbations: coherence in deep water environments.
    Colosi JA; Chandrayadula TK; Voronovich AG; Ostashev VE
    J Acoust Soc Am; 2013 Oct; 134(4):3119-33. PubMed ID: 24116510
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acoustic mode coupling induced by shallow water nonlinear internal waves: sensitivity to environmental conditions and space-time scales of internal waves.
    Colosi JA
    J Acoust Soc Am; 2008 Sep; 124(3):1452-64. PubMed ID: 19045637
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mid-frequency acoustic propagation in shallow water on the New Jersey shelf: mean intensity.
    Tang D; Henyey FS; Wang Z; Williams KL; Rouseff D; Dahl PH; Quijano J; Choi JW
    J Acoust Soc Am; 2008 Sep; 124(3):EL85-90. PubMed ID: 19045567
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Frequency dependence and intensity fluctuations due to shallow water internal waves.
    Badiey M; Katsnelson BG; Lynch JF; Pereselkov S
    J Acoust Soc Am; 2007 Aug; 122(2):747-60. PubMed ID: 17672625
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temporal coherence of sound transmissions in deep water revisited.
    Yang TC
    J Acoust Soc Am; 2008 Jul; 124(1):113-127. PubMed ID: 18646959
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acoustic normal mode fluctuation statistics in the 1995 SWARM internal wave scattering experiment.
    Headrick RH; Lynch JF; Kemp JN; Newhall AE; von der Heydt K ; Apel J; Badiey M; Chiu C; Finette S; Orr M; Pasewark B; Turgot A; Wolf S; Tielbuerger D
    J Acoust Soc Am; 2000 Jan; 107(1):201-20. PubMed ID: 10641632
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low-frequency broadband sound source localization using an adaptive normal mode back-propagation approach in a shallow-water ocean.
    Lin YT; Newhall AE; Lynch JF
    J Acoust Soc Am; 2012 Feb; 131(2):1798-813. PubMed ID: 22352606
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Entropy rate defined by internal wave scattering in long-range propagation.
    Morozov AK; Colosi JA
    J Acoust Soc Am; 2015 Sep; 138(3):1353-64. PubMed ID: 26428774
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced acoustic mode coupling resulting from an internal solitary wave approaching the shelfbreak in the South China Sea.
    Chiu LY; Reeder DB; Chang YY; Chen CF; Chiu CS; Lynch JF
    J Acoust Soc Am; 2013 Mar; 133(3):1306-19. PubMed ID: 23464003
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coherence of acoustic modes propagating through shallow water internal waves.
    Rouseff D; Turgut A; Wolf SN; Finette S; Orr MH; Pasewark BH; Apel JR; Badiey M; Chiu CS; Headrick RH; Lynch JF; Kemp JN; Newhall AE; von der Heydt K; Tielbuerger D
    J Acoust Soc Am; 2002 Apr; 111(4):1655-66. PubMed ID: 12002848
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Observation of sound focusing and defocusing due to propagating nonlinear internal waves.
    Luo J; Badiey M; Karjadi EA; Katsnelson B; Tskhoidze A; Lynch JF; Moum JN
    J Acoust Soc Am; 2008 Sep; 124(3):EL66-72. PubMed ID: 19045564
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Observationally constrained modeling of sound in curved ocean internal waves: examination of deep ducting and surface ducting at short range.
    Duda TF; Lin YT; Reeder DB
    J Acoust Soc Am; 2011 Sep; 130(3):1173-87. PubMed ID: 21895060
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temporal coherence of acoustic rays and modes using the path integral approach.
    Yang TC
    J Acoust Soc Am; 2012 Jun; 131(6):4450-60. PubMed ID: 22712918
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling the effects of linear shallow-water internal waves on horizontal array coherence.
    Rouseff D; Lunkov AA
    J Acoust Soc Am; 2015 Oct; 138(4):2256-65. PubMed ID: 26520307
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Echo statistics of individual and aggregations of scatterers in the water column of a random, oceanic waveguide.
    Jones BA; Colosi JA; Stanton TK
    J Acoust Soc Am; 2014 Jul; 136(1):90-108. PubMed ID: 24993198
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.