These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
370 related articles for article (PubMed ID: 24994814)
1. Three-dimensional osteogenic and chondrogenic systems to model osteochondral physiology and degenerative joint diseases. Alexander PG; Gottardi R; Lin H; Lozito TP; Tuan RS Exp Biol Med (Maywood); 2014 Sep; 239(9):1080-95. PubMed ID: 24994814 [TBL] [Abstract][Full Text] [Related]
2. Scaffold-free bioprinted osteogenic and chondrogenic systems to model osteochondral physiology. Breathwaite EK; Weaver JR; Murchison AC; Treadwell ML; Odanga JJ; Lee JB Biomed Mater; 2019 Oct; 14(6):065010. PubMed ID: 31491773 [TBL] [Abstract][Full Text] [Related]
3. Three-dimensional osteochondral microtissue to model pathogenesis of osteoarthritis. Lozito TP; Alexander PG; Lin H; Gottardi R; Cheng AW; Tuan RS Stem Cell Res Ther; 2013; 4 Suppl 1(Suppl 1):S6. PubMed ID: 24564995 [TBL] [Abstract][Full Text] [Related]
4. Cartilage degradation in osteoarthritis: A process of osteochondral remodeling resembles the endochondral ossification in growth plate? Xiao ZF; Su GY; Hou Y; Chen SD; Lin DK Med Hypotheses; 2018 Dec; 121():183-187. PubMed ID: 30396477 [TBL] [Abstract][Full Text] [Related]
5. Stem cell-based microphysiological osteochondral system to model tissue response to interleukin-1β. Lin H; Lozito TP; Alexander PG; Gottardi R; Tuan RS Mol Pharm; 2014 Jul; 11(7):2203-12. PubMed ID: 24830762 [TBL] [Abstract][Full Text] [Related]
6. Bioengineering Human Cartilage-Bone Tissues for Modeling of Osteoarthritis. Wu JY; Vunjak-Novakovic G Stem Cells Dev; 2022 Aug; 31(15-16):399-405. PubMed ID: 35088600 [TBL] [Abstract][Full Text] [Related]
7. Three-dimensional cultures of osteogenic and chondrogenic cells: a tissue engineering approach to mimic bone and cartilage in vitro. Tortelli F; Cancedda R Eur Cell Mater; 2009 Jun; 17():1-14. PubMed ID: 19579210 [TBL] [Abstract][Full Text] [Related]
8. Advances of nanotechnology in osteochondral regeneration. Deng C; Xu C; Zhou Q; Cheng Y Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2019 Nov; 11(6):e1576. PubMed ID: 31329375 [TBL] [Abstract][Full Text] [Related]
9. Enzyme-crosslinked gene-activated matrix for the induction of mesenchymal stem cells in osteochondral tissue regeneration. Lee YH; Wu HC; Yeh CW; Kuan CH; Liao HT; Hsu HC; Tsai JC; Sun JS; Wang TW Acta Biomater; 2017 Nov; 63():210-226. PubMed ID: 28899816 [TBL] [Abstract][Full Text] [Related]
10. Mechanically stimulated osteochondral organ culture for evaluation of biomaterials in cartilage repair studies. Vainieri ML; Wahl D; Alini M; van Osch GJVM; Grad S Acta Biomater; 2018 Nov; 81():256-266. PubMed ID: 30273741 [TBL] [Abstract][Full Text] [Related]
11. A human osteoarthritis osteochondral organ culture model for cartilage tissue engineering. Yeung P; Zhang W; Wang XN; Yan CH; Chan BP Biomaterials; 2018 Apr; 162():1-21. PubMed ID: 29428675 [TBL] [Abstract][Full Text] [Related]
12. 3D printing of fibre-reinforced cartilaginous templates for the regeneration of osteochondral defects. Critchley S; Sheehy EJ; Cunniffe G; Diaz-Payno P; Carroll SF; Jeon O; Alsberg E; Brama PAJ; Kelly DJ Acta Biomater; 2020 Sep; 113():130-143. PubMed ID: 32505800 [TBL] [Abstract][Full Text] [Related]
13. Two-Dimensional and Three-Dimensional Cartilage Model Platforms for Drug Evaluation and High-Throughput Screening Assays. Foster NC; Hall NM; Haj AJE Tissue Eng Part B Rev; 2022 Apr; 28(2):421-436. PubMed ID: 34010074 [TBL] [Abstract][Full Text] [Related]
14. Extracellular matrix derived from allogenic decellularized bone marrow mesenchymal stem cell sheets for the reconstruction of osteochondral defects in rabbits. Wang Z; Han L; Sun T; Ma J; Sun S; Ma L; Wu B Acta Biomater; 2020 Dec; 118():54-68. PubMed ID: 33068746 [TBL] [Abstract][Full Text] [Related]
15. Treatment of osteochondral defects in the rabbit's knee joint by implantation of allogeneic mesenchymal stem cells in fibrin clots. Berninger MT; Wexel G; Rummeny EJ; Imhoff AB; Anton M; Henning TD; Vogt S J Vis Exp; 2013 May; (75):e4423. PubMed ID: 23728213 [TBL] [Abstract][Full Text] [Related]
16. Development and fabrication of a two-layer tissue engineered osteochondral composite using hybrid hydrogel-cancellous bone scaffolds in a spinner flask. Song K; Li W; Wang H; Zhang Y; Li L; Wang Y; Wang H; Wang L; Liu T Biomed Mater; 2016 Oct; 11(6):065002. PubMed ID: 27767021 [TBL] [Abstract][Full Text] [Related]
17. An in vitro chondro-osteo-vascular triphasic model of the osteochondral complex. Pirosa A; Gottardi R; Alexander PG; Puppi D; Chiellini F; Tuan RS Biomaterials; 2021 May; 272():120773. PubMed ID: 33798958 [TBL] [Abstract][Full Text] [Related]
19. Bilayered constructs aimed at osteochondral strategies: the influence of medium supplements in the osteogenic and chondrogenic differentiation of amniotic fluid-derived stem cells. Rodrigues MT; Lee SJ; Gomes ME; Reis RL; Atala A; Yoo JJ Acta Biomater; 2012 Jul; 8(7):2795-806. PubMed ID: 22510402 [TBL] [Abstract][Full Text] [Related]
20. Ontogeny informs regeneration: explant models to investigate the role of the extracellular matrix in cartilage tissue assembly and development. McCreery KP; Calve S; Neu CP Connect Tissue Res; 2020; 61(3-4):278-291. PubMed ID: 32186210 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]