These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 24994885)

  • 1. Effects of pole compliance and step frequency on the biomechanics and economy of pole carrying during human walking.
    Castillo ER; Lieberman GM; McCarty LS; Lieberman DE
    J Appl Physiol (1985); 2014 Sep; 117(5):507-17. PubMed ID: 24994885
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Load carrying with flexible bamboo poles: optimization of a coupled oscillator system.
    Schroeder RT; Bertram JEA; Son Nguyen V; Vinh Hac V; Croft JL
    J Exp Biol; 2019 Dec; 222(Pt 23):. PubMed ID: 31801848
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Properties of traditional bamboo carrying poles have implications for user interactions.
    Schroeder RT; Croft JL; Ngo GD; Bertram JEA
    PLoS One; 2018; 13(5):e0196208. PubMed ID: 29746480
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carrying loads with springy poles.
    Kram R
    J Appl Physiol (1985); 1991 Sep; 71(3):1119-22. PubMed ID: 1757307
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The energetic costs of trunk and distal-limb loading during walking and running in guinea fowl Numida meleagris: I. Organismal metabolism and biomechanics.
    Marsh RL; Ellerby DJ; Henry HT; Rubenson J
    J Exp Biol; 2006 Jun; 209(Pt 11):2050-63. PubMed ID: 16709908
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding the mechanics and balance control of the carrying pole through modeling and simulation.
    Li T; Li Q; Liu T
    PLoS One; 2019; 14(6):e0218072. PubMed ID: 31173622
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energy cost and mechanical work of walking during load carriage in soldiers.
    Grenier JG; Peyrot N; Castells J; Oullion R; Messonnier L; Morin JB
    Med Sci Sports Exerc; 2012 Jun; 44(6):1131-40. PubMed ID: 22215177
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of hiking pole inertia on energy and muscular costs during uphill walking.
    Foissac MJ; Berthollet R; Seux J; Belli A; Millet GY
    Med Sci Sports Exerc; 2008 Jun; 40(6):1117-25. PubMed ID: 18460993
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Why highly compliant poles are not energetically beneficial during running: Evidence from an optimization-based biped model.
    Li T; Li Q; Liu T
    J Biomech; 2021 Mar; 117():110264. PubMed ID: 33515901
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Altering Compliance of a Load Carriage Device in the Medial-Lateral Direction Reduces Peak Forces While Walking.
    Martin JP; Li Q
    Sci Rep; 2018 Sep; 8(1):13775. PubMed ID: 30214050
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Men and women adopt similar walking mechanics and muscle activation patterns during load carriage.
    Silder A; Delp SL; Besier T
    J Biomech; 2013 Sep; 46(14):2522-8. PubMed ID: 23968555
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The energetic costs of load-carrying and the evolution of bipedalism.
    Watson JC; Payne RC; Chamberlain AT; Jones RK; Sellers WI
    J Hum Evol; 2008 May; 54(5):675-83. PubMed ID: 18023469
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect on energy expenditure of walking on gradients or carrying burdens.
    Kramer PA
    Am J Hum Biol; 2010; 22(4):497-507. PubMed ID: 20127728
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamics of carrying a load with a handle suspension.
    Ackerman J; Kelley K; Seipel J
    J Biomech; 2015 Apr; 48(6):1084-91. PubMed ID: 25766388
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Is it possible to reduce the knee joint compression force during level walking with hiking poles?
    Jensen SB; Henriksen M; Aaboe J; Hansen L; Simonsen EB; Alkjaer T
    Scand J Med Sci Sports; 2011 Dec; 21(6):e195-200. PubMed ID: 21083766
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of load and speed on the energetic cost of human walking.
    Bastien GJ; Willems PA; Schepens B; Heglund NC
    Eur J Appl Physiol; 2005 May; 94(1-2):76-83. PubMed ID: 15650888
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization characteristics of walking with and without a load on the trunk of the body.
    Falola JM; Delpech N; Brisswalter J
    Percept Mot Skills; 2000 Aug; 91(1):261-72. PubMed ID: 11011897
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic cost of generating muscular force in human walking: insights from load-carrying and speed experiments.
    Griffin TM; Roberts TJ; Kram R
    J Appl Physiol (1985); 2003 Jul; 95(1):172-83. PubMed ID: 12794096
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of the mechanical properties of backpacks and their influence on the energetics of walking.
    Foissac M; Millet GY; Geyssant A; Freychat P; Belli A
    J Biomech; 2009 Jan; 42(2):125-30. PubMed ID: 19062021
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ergonomic effects of load carriage on the upper and lower back on metabolic energy cost of walking.
    Abe D; Muraki S; Yasukouchi A
    Appl Ergon; 2008 May; 39(3):392-8. PubMed ID: 17850760
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.