These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 24995358)

  • 1. Defining biological networks for noise buffering and signaling sensitivity using approximate Bayesian computation.
    Wang S; Shen Y; Shi C; Wang T; Wei Z; Li H
    ScientificWorldJournal; 2014; 2014():625754. PubMed ID: 24995358
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Noise propagation and signaling sensitivity in biological networks: a role for positive feedback.
    Hornung G; Barkai N
    PLoS Comput Biol; 2008 Jan; 4(1):e8. PubMed ID: 18179281
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems.
    Toni T; Welch D; Strelkowa N; Ipsen A; Stumpf MP
    J R Soc Interface; 2009 Feb; 6(31):187-202. PubMed ID: 19205079
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The metabolic network of Clostridium acetobutylicum: Comparison of the approximate Bayesian computation via sequential Monte Carlo (ABC-SMC) and profile likelihood estimation (PLE) methods for determinability analysis.
    Thorn GJ; King JR
    Math Biosci; 2016 Jan; 271():62-79. PubMed ID: 26561777
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparison of Monte Carlo-based Bayesian parameter estimation methods for stochastic models of genetic networks.
    Mariño IP; Zaikin A; Míguez J
    PLoS One; 2017; 12(8):e0182015. PubMed ID: 28797087
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On optimality of kernels for approximate Bayesian computation using sequential Monte Carlo.
    Filippi S; Barnes CP; Cornebise J; Stumpf MP
    Stat Appl Genet Mol Biol; 2013 Mar; 12(1):87-107. PubMed ID: 23502346
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An automatic adaptive method to combine summary statistics in approximate Bayesian computation.
    Harrison JU; Baker RE
    PLoS One; 2020; 15(8):e0236954. PubMed ID: 32760106
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparing two sequential Monte Carlo samplers for exact and approximate Bayesian inference on biological models.
    Daly AC; Cooper J; Gavaghan DJ; Holmes C
    J R Soc Interface; 2017 Sep; 14(134):. PubMed ID: 28931636
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mathematical Modelling of Parasite Dynamics: A Stochastic Simulation-Based Approach and Parameter Estimation via Modified Sequential-Type Approximate Bayesian Computation.
    Twumasi C; Cable J; Pepelyshev A
    Bull Math Biol; 2024 Apr; 86(5):54. PubMed ID: 38598133
    [TBL] [Abstract][Full Text] [Related]  

  • 10. al3c: high-performance software for parameter inference using Approximate Bayesian Computation.
    Stram AH; Marjoram P; Chen GK
    Bioinformatics; 2015 Nov; 31(21):3549-51. PubMed ID: 26142186
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GpABC: a Julia package for approximate Bayesian computation with Gaussian process emulation.
    Tankhilevich E; Ish-Horowicz J; Hameed T; Roesch E; Kleijn I; Stumpf MPH; He F
    Bioinformatics; 2020 May; 36(10):3286-3287. PubMed ID: 32022854
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The ABC of reverse engineering biological signalling systems.
    Secrier M; Toni T; Stumpf MP
    Mol Biosyst; 2009 Dec; 5(12):1925-35. PubMed ID: 19798456
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimating parameters of a stochastic cell invasion model with fluorescent cell cycle labelling using approximate Bayesian computation.
    Carr MJ; Simpson MJ; Drovandi C
    J R Soc Interface; 2021 Sep; 18(182):20210362. PubMed ID: 34547212
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Noise attenuation in the ON and OFF states of biological switches.
    Chen M; Wang L; Liu CC; Nie Q
    ACS Synth Biol; 2013 Oct; 2(10):587-93. PubMed ID: 23768065
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Approximate Bayesian computation for spatial SEIR(S) epidemic models.
    Brown GD; Porter AT; Oleson JJ; Hinman JA
    Spat Spatiotemporal Epidemiol; 2018 Feb; 24():27-37. PubMed ID: 29413712
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alive SMC(2) : Bayesian model selection for low-count time series models with intractable likelihoods.
    Drovandi CC; McCutchan RA
    Biometrics; 2016 Jun; 72(2):344-53. PubMed ID: 26584211
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Points of Significance. Bayesian networks.
    Puga JL; Krzywinski M; Altman N
    Nat Methods; 2015 Sep; 12(9):799-800. PubMed ID: 26554085
    [No Abstract]   [Full Text] [Related]  

  • 18. Bayesian ranking of biochemical system models.
    Vyshemirsky V; Girolami MA
    Bioinformatics; 2008 Mar; 24(6):833-9. PubMed ID: 18057018
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inference-based assessment of parameter identifiability in nonlinear biological models.
    Daly AC; Gavaghan D; Cooper J; Tavener S
    J R Soc Interface; 2018 Jul; 15(144):. PubMed ID: 30021928
    [TBL] [Abstract][Full Text] [Related]  

  • 20. HIV with contact tracing: a case study in approximate Bayesian computation.
    Blum MG; Tran VC
    Biostatistics; 2010 Oct; 11(4):644-60. PubMed ID: 20457785
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.