These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 24995530)

  • 41. The NMR structure of the sensory domain of the membranous two-component fumarate sensor (histidine protein kinase) DcuS of Escherichia coli.
    Pappalardo L; Janausch IG; Vijayan V; Zientz E; Junker J; Peti W; Zweckstetter M; Unden G; Griesinger C
    J Biol Chem; 2003 Oct; 278(40):39185-8. PubMed ID: 12907689
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The cytoplasmic PASC domain of the sensor kinase DcuS of Escherichia coli: role in signal transduction, dimer formation, and DctA interaction.
    Monzel C; Degreif-Dünnwald P; Gröpper C; Griesinger C; Unden G
    Microbiologyopen; 2013 Dec; 2(6):912-27. PubMed ID: 24039243
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Identification of sigma S-dependent genes associated with the stationary-phase acid-resistance phenotype of Shigella flexneri.
    Waterman SR; Small PL
    Mol Microbiol; 1996 Sep; 21(5):925-40. PubMed ID: 8885264
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The fumarate/succinate antiporter DcuB of Escherichia coli is a bifunctional protein with sites for regulation of DcuS-dependent gene expression.
    Kleefeld A; Ackermann B; Bauer J; Kra Mer J; Unden G
    J Biol Chem; 2009 Jan; 284(1):265-275. PubMed ID: 18957436
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Crystal structure of the C-terminal domain of the two-component system transmitter protein nitrogen regulator II (NRII; NtrB), regulator of nitrogen assimilation in Escherichia coli.
    Song Y; Peisach D; Pioszak AA; Xu Z; Ninfa AJ
    Biochemistry; 2004 Jun; 43(21):6670-8. PubMed ID: 15157101
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Adaptive laboratory evolution of
    Du B; Olson CA; Sastry AV; Fang X; Phaneuf PV; Chen K; Wu M; Szubin R; Xu S; Gao Y; Hefner Y; Feist AM; Palsson BO
    Microbiology (Reading); 2020 Feb; 166(2):141-148. PubMed ID: 31625833
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The Escherichia coli Acid Stress Response and Its Significance for Pathogenesis.
    De Biase D; Lund PA
    Adv Appl Microbiol; 2015; 92():49-88. PubMed ID: 26003933
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Inactivation of alternative sigma factor 54 (RpoN) leads to increased acid resistance, and alters locus of enterocyte effacement (LEE) expression in Escherichia coli O157 : H7.
    Riordan JT; Tietjen JA; Walsh CW; Gustafson JE; Whittam TS
    Microbiology (Reading); 2010 Mar; 156(Pt 3):719-730. PubMed ID: 19942657
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Substrate selectivity of the acid-activated glutamate/γ-aminobutyric acid (GABA) antiporter GadC from Escherichia coli.
    Ma D; Lu P; Shi Y
    J Biol Chem; 2013 May; 288(21):15148-53. PubMed ID: 23589309
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Escherichia coli gene expression responsive to levels of the response regulator EvgA.
    Masuda N; Church GM
    J Bacteriol; 2002 Nov; 184(22):6225-34. PubMed ID: 12399493
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Acid and base resistance in Escherichia coli and Shigella flexneri: role of rpoS and growth pH.
    Small P; Blankenhorn D; Welty D; Zinser E; Slonczewski JL
    J Bacteriol; 1994 Mar; 176(6):1729-37. PubMed ID: 8132468
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The ArcB leucine zipper domain is required for proper ArcB signaling.
    Nuñez Oreza LA; Alvarez AF; Arias-Olguín II; Torres Larios A; Georgellis D
    PLoS One; 2012; 7(5):e38187. PubMed ID: 22666479
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A 750 bp sensory integration region directs global control of the Escherichia coli GadE acid resistance regulator.
    Sayed AK; Foster JW
    Mol Microbiol; 2009 Mar; 71(6):1435-50. PubMed ID: 19220752
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The structure of the periplasmic ligand-binding domain of the sensor kinase CitA reveals the first extracellular PAS domain.
    Reinelt S; Hofmann E; Gerharz T; Bott M; Madden DR
    J Biol Chem; 2003 Oct; 278(40):39189-96. PubMed ID: 12867417
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A new structural domain in the Escherichia coli RcsC hybrid sensor kinase connects histidine kinase and phosphoreceiver domains.
    Rogov VV; Rogova NY; Bernhard F; Koglin A; Löhr F; Dötsch V
    J Mol Biol; 2006 Nov; 364(1):68-79. PubMed ID: 17005198
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The sensor kinase CitA (DpiB) of Escherichia coli functions as a high-affinity citrate receptor.
    Kaspar S; Bott M
    Arch Microbiol; 2002 Apr; 177(4):313-21. PubMed ID: 11889485
    [TBL] [Abstract][Full Text] [Related]  

  • 57. YjdE (AdiC) is the arginine:agmatine antiporter essential for arginine-dependent acid resistance in Escherichia coli.
    Gong S; Richard H; Foster JW
    J Bacteriol; 2003 Aug; 185(15):4402-9. PubMed ID: 12867448
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Domain swapping reveals that the N-terminal domain of the sensor kinase KdpD in Escherichia coli is important for signaling.
    Heermann R; Lippert ML; Jung K
    BMC Microbiol; 2009 Jul; 9():133. PubMed ID: 19589130
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Interaction of the Escherichia coli transporter DctA with the sensor kinase DcuS: presence of functional DctA/DcuS sensor units.
    Witan J; Bauer J; Wittig I; Steinmetz PA; Erker W; Unden G
    Mol Microbiol; 2012 Sep; 85(5):846-61. PubMed ID: 22780562
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The inner membrane protein, YhiM, is necessary for Escherichia coli (E. coli) survival in acidic conditions.
    Nguyen TM; Sparks-Thissen RL
    Arch Microbiol; 2012 Jul; 194(7):637-41. PubMed ID: 22327802
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.