These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 24995530)

  • 61. Manipulation of the anoxic metabolism in Escherichia coli by ArcB deletion variants in the ArcBA two-component system.
    Bidart GN; Ruiz JA; de Almeida A; Méndez BS; Nikel PI
    Appl Environ Microbiol; 2012 Dec; 78(24):8784-94. PubMed ID: 23064346
    [TBL] [Abstract][Full Text] [Related]  

  • 62. New insights into the signaling mechanism of the pH-responsive, membrane-integrated transcriptional activator CadC of Escherichia coli.
    Haneburger I; Eichinger A; Skerra A; Jung K
    J Biol Chem; 2011 Mar; 286(12):10681-9. PubMed ID: 21216950
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Identification of basic amino acid residues important for citrate binding by the periplasmic receptor domain of the sensor kinase CitA.
    Gerharz T; Reinelt S; Kaspar S; Scapozza L; Bott M
    Biochemistry; 2003 May; 42(19):5917-24. PubMed ID: 12741850
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Characterization of the Escherichia coli O157:H7 Sakai GadE regulon.
    Kailasan Vanaja S; Bergholz TM; Whittam TS
    J Bacteriol; 2009 Mar; 191(6):1868-77. PubMed ID: 19114477
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Probing conservation of HAMP linker structure and signal transduction mechanism through analysis of hybrid sensor kinases.
    Appleman JA; Chen LL; Stewart V
    J Bacteriol; 2003 Aug; 185(16):4872-82. PubMed ID: 12897007
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Collaborative regulation of Escherichia coli glutamate-dependent acid resistance by two AraC-like regulators, GadX and GadW (YhiW).
    Ma Z; Richard H; Tucker DL; Conway T; Foster JW
    J Bacteriol; 2002 Dec; 184(24):7001-12. PubMed ID: 12446650
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Cpx signal transduction is influenced by a conserved N-terminal domain in the novel inhibitor CpxP and the periplasmic protease DegP.
    Buelow DR; Raivio TL
    J Bacteriol; 2005 Oct; 187(19):6622-30. PubMed ID: 16166523
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Rotational on-off switching of a hybrid membrane sensor kinase Tar-ArcB in Escherichia coli.
    Kwon O; Georgellis D; Lin EC
    J Biol Chem; 2003 Apr; 278(15):13192-5. PubMed ID: 12562763
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Gain-of-function mutations cluster in distinct regions associated with the signalling pathway in the PAS domain of the aerotaxis receptor, Aer.
    Campbell AJ; Watts KJ; Johnson MS; Taylor BL
    Mol Microbiol; 2010 Aug; 77(3):575-86. PubMed ID: 20545849
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Role of the periplasmic domain of the Escherichia coli NarX sensor-transmitter protein in nitrate-dependent signal transduction and gene regulation.
    Cavicchioli R; Chiang RC; Kalman LV; Gunsalus RP
    Mol Microbiol; 1996 Sep; 21(5):901-11. PubMed ID: 8885262
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Dynamic Clustering of the Bacterial Sensory Kinase BaeS.
    Koler M; Frank V; Amartely H; Friedler A; Vaknin A
    PLoS One; 2016; 11(3):e0150349. PubMed ID: 26950881
    [TBL] [Abstract][Full Text] [Related]  

  • 72. 'Locked-on' and 'locked-off' signal transduction mutations in the periplasmic domain of the Escherichia coli NarQ and NarX sensors affect nitrate- and nitrite-dependent regulation by NarL and NarP.
    Chiang RC; Cavicchioli R; Gunsalus RP
    Mol Microbiol; 1997 Jun; 24(5):1049-60. PubMed ID: 9220011
    [TBL] [Abstract][Full Text] [Related]  

  • 73. The glutamate-dependent acid resistance system in Escherichia coli: essential and dual role of the His-Asp phosphorelay RcsCDB/AF.
    Castanié-Cornet MP; Treffandier H; Francez-Charlot A; Gutierrez C; Cam K
    Microbiology (Reading); 2007 Jan; 153(Pt 1):238-46. PubMed ID: 17185552
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Introduction to bacterial signal transduction networks.
    Eguchi Y; Utsumi R
    Adv Exp Med Biol; 2008; 631():1-6. PubMed ID: 18792678
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Analysis of differentially upregulated proteins in ptsHIcrr
    Aguilar C; Martínez-Batallar G; Flores N; Moreno-Avitia F; Encarnación S; Escalante A; Bolívar F
    Appl Microbiol Biotechnol; 2018 Dec; 102(23):10193-10208. PubMed ID: 30284012
    [TBL] [Abstract][Full Text] [Related]  

  • 76. The histidine kinase CusS senses silver ions through direct binding by its sensor domain.
    Gudipaty SA; McEvoy MM
    Biochim Biophys Acta; 2014 Sep; 1844(9):1656-61. PubMed ID: 24948475
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Conserved sequence motifs in the unorthodox BvgS two-component sensor protein of Bordetella pertussis.
    Beier D; Deppisch H; Gross R
    Mol Gen Genet; 1996 Aug; 252(1-2):169-76. PubMed ID: 8804390
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Signal transduction cascade between EvgA/EvgS and PhoP/PhoQ two-component systems of Escherichia coli.
    Eguchi Y; Okada T; Minagawa S; Oshima T; Mori H; Yamamoto K; Ishihama A; Utsumi R
    J Bacteriol; 2004 May; 186(10):3006-14. PubMed ID: 15126461
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Structural analysis of ligand stimulation of the histidine kinase NarX.
    Cheung J; Hendrickson WA
    Structure; 2009 Feb; 17(2):190-201. PubMed ID: 19217390
    [TBL] [Abstract][Full Text] [Related]  

  • 80. The sensor kinase KdpD of Escherichia coli senses external K+.
    Laermann V; Ćudić E; Kipschull K; Zimmann P; Altendorf K
    Mol Microbiol; 2013 Jun; 88(6):1194-204. PubMed ID: 23651428
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.