These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 24995530)

  • 81. The histidine kinase CusS senses silver ions through direct binding by its sensor domain.
    Gudipaty SA; McEvoy MM
    Biochim Biophys Acta; 2014 Sep; 1844(9):1656-61. PubMed ID: 24948475
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Conserved sequence motifs in the unorthodox BvgS two-component sensor protein of Bordetella pertussis.
    Beier D; Deppisch H; Gross R
    Mol Gen Genet; 1996 Aug; 252(1-2):169-76. PubMed ID: 8804390
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Signal transduction cascade between EvgA/EvgS and PhoP/PhoQ two-component systems of Escherichia coli.
    Eguchi Y; Okada T; Minagawa S; Oshima T; Mori H; Yamamoto K; Ishihama A; Utsumi R
    J Bacteriol; 2004 May; 186(10):3006-14. PubMed ID: 15126461
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Structural analysis of ligand stimulation of the histidine kinase NarX.
    Cheung J; Hendrickson WA
    Structure; 2009 Feb; 17(2):190-201. PubMed ID: 19217390
    [TBL] [Abstract][Full Text] [Related]  

  • 85. The sensor kinase KdpD of Escherichia coli senses external K+.
    Laermann V; Ćudić E; Kipschull K; Zimmann P; Altendorf K
    Mol Microbiol; 2013 Jun; 88(6):1194-204. PubMed ID: 23651428
    [TBL] [Abstract][Full Text] [Related]  

  • 86. ProQ is an RNA chaperone that controls ProP levels in Escherichia coli.
    Chaulk SG; Smith Frieday MN; Arthur DC; Culham DE; Edwards RA; Soo P; Frost LS; Keates RA; Glover JN; Wood JM
    Biochemistry; 2011 Apr; 50(15):3095-106. PubMed ID: 21381725
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Ferric hydroxamate binding protein FhuD from Escherichia coli: mutants in conserved and non-conserved regions.
    Clarke TE; Rohrbach MR; Tari LW; Vogel HJ; Köster W
    Biometals; 2002 Jun; 15(2):121-31. PubMed ID: 12046920
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Genetic dissection of the divergent activities of the multifunctional membrane sensor BglF.
    Monderer-Rothkoff G; Amster-Choder O
    J Bacteriol; 2007 Dec; 189(23):8601-15. PubMed ID: 17905978
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Transcriptional expression of Escherichia coli glutamate-dependent acid resistance genes gadA and gadBC in an hns rpoS mutant.
    Waterman SR; Small PL
    J Bacteriol; 2003 Aug; 185(15):4644-7. PubMed ID: 12867478
    [TBL] [Abstract][Full Text] [Related]  

  • 90. High-resolution structures of Escherichia coli cDsbD in different redox states: A combined crystallographic, biochemical and computational study.
    Stirnimann CU; Rozhkova A; Grauschopf U; Böckmann RA; Glockshuber R; Capitani G; Grütter MG
    J Mol Biol; 2006 May; 358(3):829-45. PubMed ID: 16545842
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Escherichia coli HdeB is an acid stress chaperone.
    Kern R; Malki A; Abdallah J; Tagourti J; Richarme G
    J Bacteriol; 2007 Jan; 189(2):603-10. PubMed ID: 17085547
    [TBL] [Abstract][Full Text] [Related]  

  • 92. The response to stationary-phase stress conditions in Escherichia coli: role and regulation of the glutamic acid decarboxylase system.
    De Biase D; Tramonti A; Bossa F; Visca P
    Mol Microbiol; 1999 Jun; 32(6):1198-211. PubMed ID: 10383761
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Genetic and Mechanistic Analyses of the Periplasmic Domain of the Enterohemorrhagic Escherichia coli QseC Histidine Sensor Kinase.
    Parker CT; Russell R; Njoroge JW; Jimenez AG; Taussig R; Sperandio V
    J Bacteriol; 2017 Apr; 199(8):. PubMed ID: 28138098
    [TBL] [Abstract][Full Text] [Related]  

  • 94. The transmembrane domains of the sensor kinase KdpD of Escherichia coli are not essential for sensing K+ limitation.
    Heermann R; Fohrmann A; Altendorf K; Jung K
    Mol Microbiol; 2003 Feb; 47(3):839-48. PubMed ID: 12535080
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Transduction of envelope stress in Escherichia coli by the Cpx two-component system.
    Raivio TL; Silhavy TJ
    J Bacteriol; 1997 Dec; 179(24):7724-33. PubMed ID: 9401031
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Differentiation of DctA and DcuS function in the DctA/DcuS sensor complex of Escherichia coli: function of DctA as an activity switch and of DcuS as the C4-dicarboxylate sensor.
    Steinmetz PA; Wörner S; Unden G
    Mol Microbiol; 2014 Oct; 94(1):218-29. PubMed ID: 25135747
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Small noncoding RNA GcvB is a novel regulator of acid resistance in Escherichia coli.
    Jin Y; Watt RM; Danchin A; Huang JD
    BMC Genomics; 2009 Apr; 10():165. PubMed ID: 19379489
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Hydrogenase-3 contributes to anaerobic acid resistance of Escherichia coli.
    Noguchi K; Riggins DP; Eldahan KC; Kitko RD; Slonczewski JL
    PLoS One; 2010 Apr; 5(4):e10132. PubMed ID: 20405029
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Escherichia coli acid resistance: cAMP receptor protein and a 20 bp cis-acting sequence control pH and stationary phase expression of the gadA and gadBC glutamate decarboxylase genes.
    Castanie-Cornet MP; Foster JW
    Microbiology (Reading); 2001 Mar; 147(Pt 3):709-715. PubMed ID: 11238978
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Acid-adapted strains of Escherichia coli K-12 obtained by experimental evolution.
    Harden MM; He A; Creamer K; Clark MW; Hamdallah I; Martinez KA; Kresslein RL; Bush SP; Slonczewski JL
    Appl Environ Microbiol; 2015 Mar; 81(6):1932-41. PubMed ID: 25556191
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.