These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 24995557)

  • 1. Estimation of anisotropy coefficient of swine pancreas, liver and muscle at 1064 nm based on goniometric technique.
    Saccomandi P; Vogel V; Bazrafshan B; Maurer J; Schena E; Vogl TJ; Silvestri S; Mäntele W
    J Biophotonics; 2015 May; 8(5):422-8. PubMed ID: 24995557
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Goniometric measurement for the estimation of anisotropy coefficient of human and animal pancreas.
    Saccomandi P; Schena E; Massaroni C; Di Matteo FM; Silvestri S
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1283-6. PubMed ID: 26736502
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimation of anisotropy coefficient and total attenuation of swine liver at 850 nm based on a goniometric technique: influence of sample thickness.
    Saccomandi P; Vogel V; Bazrafshan B; Schena E; Vogl TJ; Silvestri S; Mäntele W
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():5332-5. PubMed ID: 25571198
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Error estimation of measuring total interaction coefficients of turbid media using collimated light transmission.
    Wang L; Jacques SL
    Phys Med Biol; 1994 Dec; 39(12):2349-54. PubMed ID: 15551558
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Goniometric measurements of thick tissue using Monte Carlo simulations to obtain the single scattering anisotropy coefficient.
    Hall G; Jacques SL; Eliceiri KW; Campagnola PJ
    Biomed Opt Express; 2012 Nov; 3(11):2707-19. PubMed ID: 23162710
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monte Carlo analysis of single fiber reflectance spectroscopy: photon path length and sampling depth.
    Kanick SC; Robinson DJ; Sterenborg HJ; Amelink A
    Phys Med Biol; 2009 Nov; 54(22):6991-7008. PubMed ID: 19887712
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimation of scattering phase function utilizing laser Doppler power density spectra.
    Wojtkiewicz S; Liebert A; Rix H; Sawosz P; Maniewski R
    Phys Med Biol; 2013 Feb; 58(4):937-55. PubMed ID: 23340453
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multispectral measurement of scattering-angular light distribution in apple skin and flesh samples.
    Askoura ML; Vaudelle F; L'Huillier JP
    Appl Opt; 2016 Nov; 55(32):9217-9225. PubMed ID: 27857310
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of the scattering anisotropy with optical coherence tomography.
    Kodach VM; Faber DJ; van Marle J; van Leeuwen TG; Kalkman J
    Opt Express; 2011 Mar; 19(7):6131-40. PubMed ID: 21451637
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extinction and absorption coefficients and scattering phase functions of human tissues in vitro.
    Marchesini R; Bertoni A; Andreola S; Melloni E; Sichirollo AE
    Appl Opt; 1989 Jun; 28(12):2318-24. PubMed ID: 20555518
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimation of porcine pancreas optical properties in the 600-1100 nm wavelength range for light-based therapies.
    Lanka P; Bianchi L; Farina A; De Landro M; Pifferi A; Saccomandi P
    Sci Rep; 2022 Aug; 12(1):14300. PubMed ID: 35995952
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of the in vivo and ex vivo optical properties in a mouse ear model.
    Salomatina E; Yaroslavsky AN
    Phys Med Biol; 2008 Jun; 53(11):2797-807. PubMed ID: 18451462
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Total attenuation coefficients and scattering phase functions of tissues and phantom materials at 633 nm.
    Flock ST; Wilson BC; Patterson MS
    Med Phys; 1987; 14(5):835-41. PubMed ID: 3683313
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measuring the scattering parameters of tissues from quantitative phase imaging of thin slices.
    Ding H; Wang Z; Liang X; Boppart SA; Tangella K; Popescu G
    Opt Lett; 2011 Jun; 36(12):2281-3. PubMed ID: 21685993
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The optical properties of the cochlear bone.
    Ugnell AO; Oberg PA
    Med Eng Phys; 1997 Oct; 19(7):630-6. PubMed ID: 9457696
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nature of light scattering in dental enamel and dentin at visible and near-infrared wavelengths.
    Fried D; Glena RE; Featherstone JD; Seka W
    Appl Opt; 1995 Mar; 34(7):1278-85. PubMed ID: 21037659
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of the scattering coefficient and the anisotropy factor from laser Doppler spectra of liquids including blood.
    Kienle A; Patterson MS; Ott L; Steiner R
    Appl Opt; 1996 Jul; 35(19):3404-12. PubMed ID: 21102728
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of the scattering phase function approximation on the optical properties of blood determined from the integrating sphere measurements.
    Yaroslavsky AN; Yaroslavsky IV; Goldbach T; Schwarzmaier HJ
    J Biomed Opt; 1999 Jan; 4(1):47-53. PubMed ID: 23015169
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anisotropy and multiple scattering in thick mammalian tissues.
    Jarry G; Henry F; Kaiser R
    J Opt Soc Am A Opt Image Sci Vis; 2000 Jan; 17(1):149-53. PubMed ID: 10641850
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimation of optical constants from multiple-scattered light using approximations for single particle scattering characteristics.
    Velazco-Roa MA; Thennadil SN
    Appl Opt; 2007 Dec; 46(35):8453-60. PubMed ID: 18071375
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.