BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 24995678)

  • 1. Toward lithium ion batteries with enhanced thermal conductivity.
    Koo B; Goli P; Sumant AV; dos Santos Claro PC; Rajh T; Johnson CS; Balandin AA; Shevchenko EV
    ACS Nano; 2014 Jul; 8(7):7202-7. PubMed ID: 24995678
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Light-weight flexible carbon nanotube based organic composites with large thermoelectric power factors.
    Yu C; Choi K; Yin L; Grunlan JC
    ACS Nano; 2011 Oct; 5(10):7885-92. PubMed ID: 21899362
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Progress towards high-power Li/CFx batteries: electrode architectures using carbon nanotubes with CFx.
    Zhang Q; Takeuchi KJ; Takeuchi ES; Marschilok AC
    Phys Chem Chem Phys; 2015 Sep; 17(35):22504-18. PubMed ID: 26280394
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Challenges and prospects of lithium-sulfur batteries.
    Manthiram A; Fu Y; Su YS
    Acc Chem Res; 2013 May; 46(5):1125-34. PubMed ID: 23095063
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Towards ultrathick battery electrodes: aligned carbon nanotube-enabled architecture.
    Evanoff K; Khan J; Balandin AA; Magasinski A; Ready WJ; Fuller TF; Yushin G
    Adv Mater; 2012 Jan; 24(4):533-7. PubMed ID: 22213011
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combination of lightweight elements and nanostructured materials for batteries.
    Chen J; Cheng F
    Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Building robust architectures of carbon and metal oxide nanocrystals toward high-performance anodes for lithium-ion batteries.
    Jia X; Chen Z; Cui X; Peng Y; Wang X; Wang G; Wei F; Lu Y
    ACS Nano; 2012 Nov; 6(11):9911-9. PubMed ID: 23046380
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High capacity and excellent stability of lithium ion battery anode using interface-controlled binder-free multiwall carbon nanotubes grown on copper.
    Lahiri I; Oh SW; Hwang JY; Cho S; Sun YK; Banerjee R; Choi W
    ACS Nano; 2010 Jun; 4(6):3440-6. PubMed ID: 20441185
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In-plane and cross-plane thermal conductivities of molybdenum disulfide.
    Ding Z; Jiang JW; Pei QX; Zhang YW
    Nanotechnology; 2015 Feb; 26(6):065703. PubMed ID: 25597653
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultra strong silicon-coated carbon nanotube nonwoven fabric as a multifunctional lithium-ion battery anode.
    Evanoff K; Benson J; Schauer M; Kovalenko I; Lashmore D; Ready WJ; Yushin G
    ACS Nano; 2012 Nov; 6(11):9837-45. PubMed ID: 23075213
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Si/Ge double-layered nanotube array as a lithium ion battery anode.
    Song T; Cheng H; Choi H; Lee JH; Han H; Lee DH; Yoo DS; Kwon MS; Choi JM; Doo SG; Chang H; Xiao J; Huang Y; Park WI; Chung YC; Kim H; Rogers JA; Paik U
    ACS Nano; 2012 Jan; 6(1):303-9. PubMed ID: 22142021
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dominant factors governing the rate capability of a TiO2 nanotube anode for high power lithium ion batteries.
    Han H; Song T; Lee EK; Devadoss A; Jeon Y; Ha J; Chung YC; Choi YM; Jung YG; Paik U
    ACS Nano; 2012 Sep; 6(9):8308-15. PubMed ID: 22935008
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanocarbon networks for advanced rechargeable lithium batteries.
    Xin S; Guo YG; Wan LJ
    Acc Chem Res; 2012 Oct; 45(10):1759-69. PubMed ID: 22953777
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Peapod-like composite with nickel phosphide nanoparticles encapsulated in carbon fibers as enhanced anode for li-ion batteries.
    Zhang H; Feng Y; Zhang Y; Fang L; Li W; Liu Q; Wu K; Wang Y
    ChemSusChem; 2014 Jul; 7(7):2000-6. PubMed ID: 24648293
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabricating genetically engineered high-power lithium-ion batteries using multiple virus genes.
    Lee YJ; Yi H; Kim WJ; Kang K; Yun DS; Strano MS; Ceder G; Belcher AM
    Science; 2009 May; 324(5930):1051-5. PubMed ID: 19342549
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermophysical properties of LiCoO₂-LiMn₂O₄ blended electrode materials for Li-ion batteries.
    Gotcu P; Seifert HJ
    Phys Chem Chem Phys; 2016 Apr; 18(15):10550-62. PubMed ID: 27031918
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiwalled carbon nanotubes anchored with SnS2 nanosheets as high-performance anode materials of lithium-ion batteries.
    Zhai C; Du N; Zhang H; Yu J; Yang D
    ACS Appl Mater Interfaces; 2011 Oct; 3(10):4067-74. PubMed ID: 21916448
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon-coated Si nanoparticles dispersed in carbon nanotube networks as anode material for lithium-ion batteries.
    Xue L; Xu G; Li Y; Li S; Fu K; Shi Q; Zhang X
    ACS Appl Mater Interfaces; 2013 Jan; 5(1):21-5. PubMed ID: 23206443
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-dimensional thin film for lithium-ion batteries and supercapacitors.
    Yang Y; Peng Z; Wang G; Ruan G; Fan X; Li L; Fei H; Hauge RH; Tour JM
    ACS Nano; 2014 Jul; 8(7):7279-87. PubMed ID: 24930958
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.