These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 2499580)

  • 1. Protein denaturation during heat shock and related stress. Escherichia coli beta-galactosidase and Photinus pyralis luciferase inactivation in mouse cells.
    Nguyen VT; Morange M; Bensaude O
    J Biol Chem; 1989 Jun; 264(18):10487-92. PubMed ID: 2499580
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increased thermal aggregation of proteins in ATP-depleted mammalian cells.
    Nguyen VT; Bensaude O
    Eur J Biochem; 1994 Feb; 220(1):239-46. PubMed ID: 7907018
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Denaturation of proteins during heat shock. In vivo recovery of solubility and activity of reporter enzymes.
    Pinto M; Morange M; Bensaude O
    J Biol Chem; 1991 Jul; 266(21):13941-6. PubMed ID: 1906889
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Luminometric quantitation of photinus pyralis firefly luciferase and Escherichia coli beta-galactosidase in blood-contaminated organ lysates.
    Smith AD; Trempe JP
    Anal Biochem; 2000 Nov; 286(1):164-72. PubMed ID: 11038287
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermostability of a nuclear-targeted luciferase expressed in mammalian cells. Destabilizing influence of the intranuclear microenvironment.
    Michels AA; Nguyen VT; Konings AW; Kampinga HH; Bensaude O
    Eur J Biochem; 1995 Dec; 234(2):382-9. PubMed ID: 8536679
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A mutant in a major heat shock protein of Escherichia coli continues to show inducible thermotolerance.
    Ramsay N
    Mol Gen Genet; 1988 Feb; 211(2):332-4. PubMed ID: 3280945
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetics of the thermal inactivation and the refolding of bacterial luciferases in Bacillus subtilis and in Escherichia coli differ.
    Gnuchikh E; Baranova A; Schukina V; Khaliullin I; Zavilgelsky G; Manukhov I
    PLoS One; 2019; 14(12):e0226576. PubMed ID: 31869349
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Firefly luciferase terminally degraded by mild heat exposure: implications for reporter assays.
    Harrison EM; Garden OJ; Ross JA; Wigmore SJ
    J Immunol Methods; 2006 Mar; 310(1-2):182-5. PubMed ID: 16443236
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New heat shock puffs and beta-galactosidase activity resulting from transformation of Drosophila with an hsp70-lacZ hybrid gene.
    Lis JT; Simon JA; Sutton CA
    Cell; 1983 Dec; 35(2 Pt 1):403-10. PubMed ID: 6418386
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression of heat shock-beta-galactosidase hybrid genes in cultured Drosophila cells.
    Lawson R; Mestril R; Schiller P; Voellmy R
    Mol Gen Genet; 1984; 198(2):116-24. PubMed ID: 6441101
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Small heat shock protein AgsA: an effective stabilizer of enzyme activities.
    Tomoyasu T; Tabata A; Ishikawa Y; Whiley RA; Nagamune H
    J Biosci Bioeng; 2013 Jan; 115(1):15-9. PubMed ID: 22929984
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The stress-related production of the active Photinus pyralis and Luciola mingrelica firefly luciferases in Escherichia coli.
    Leont'eva O; Kutuzova G; Skripkin E; Ugarova N
    Appl Biochem Biotechnol; 1996; 61(1-2):109-22. PubMed ID: 9100349
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ecdysterone selectively stimulates the expression of a 23000-Da heat-shock protein-beta-galactosidase hybrid gene in cultured Drosophila cells.
    Lawson R; Mestril R; Luo Y; Voellmy R
    Dev Biol; 1985 Aug; 110(2):321-30. PubMed ID: 3926562
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Active-site-directed inactivation of Aspergillus oryzae beta-galactosidase with beta-D-galactopyranosylmethyl-p-nitrophenyltriazene.
    Mega T; Nishijima T; Ikenaka T
    J Biochem; 1990 Apr; 107(4):641-4. PubMed ID: 2113523
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of Hsp70 (DnaK-DnaJ-GrpE) and Hsp100 (ClpA and ClpB) chaperones in refolding and increased thermal stability of bacterial luciferases in Escherichia coli cells.
    Zavilgelsky GB; Kotova VY; Mazhul' MM; Manukhov IV
    Biochemistry (Mosc); 2002 Sep; 67(9):986-92. PubMed ID: 12387711
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression of ClpB, an analog of the ATP-dependent protease regulatory subunit in Escherichia coli, is controlled by a heat shock sigma factor (sigma 32).
    Kitagawa M; Wada C; Yoshioka S; Yura T
    J Bacteriol; 1991 Jul; 173(14):4247-53. PubMed ID: 1906060
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of heat shock on expression of proteins not involved in the heat-shock regulon.
    Fabisiewicz A; Janion C
    Eur J Biochem; 1992 Oct; 209(2):549-53. PubMed ID: 1425661
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heat shock gene expression in continuous cultures of Escherichia coli.
    Heitzer A; Mason CA; Hamer G
    J Biotechnol; 1992 Jan; 22(1-2):153-69. PubMed ID: 1367813
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interactions between metabolic intermediates and beta-galactosidase from Escherichia coli.
    Moses V; Sharp PB
    Biochem J; 1970 Jul; 118(3):491-5. PubMed ID: 4319544
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inactivation of beta-Galactosidase by iodination of tyrosine-253.
    Huber RE; Fowler AV; Zabin I
    Biochemistry; 1982 Sep; 21(20):5052-5. PubMed ID: 6814483
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.