BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 24995982)

  • 1. Using targeted chromatin regulators to engineer combinatorial and spatial transcriptional regulation.
    Keung AJ; Bashor CJ; Kiriakov S; Collins JJ; Khalil AS
    Cell; 2014 Jul; 158(1):110-20. PubMed ID: 24995982
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A high-throughput synthetic biology approach for studying combinatorial chromatin-based transcriptional regulation.
    Alcantar MA; English MA; Valeri JA; Collins JJ
    Mol Cell; 2024 Jun; 84(12):2382-2396.e9. PubMed ID: 38906116
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptional networks: reverse-engineering gene regulation on a global scale.
    Chua G; Robinson MD; Morris Q; Hughes TR
    Curr Opin Microbiol; 2004 Dec; 7(6):638-46. PubMed ID: 15556037
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptional regulatory network shapes the genome structure of Saccharomyces cerevisiae.
    Li S; Heermann DW
    Nucleus; 2013; 4(3):216-28. PubMed ID: 23674068
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comprehensive analysis of combinatorial regulation using the transcriptional regulatory network of yeast.
    Balaji S; Babu MM; Iyer LM; Luscombe NM; Aravind L
    J Mol Biol; 2006 Jun; 360(1):213-27. PubMed ID: 16762362
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptional responses to fatty acid are coordinated by combinatorial control.
    Smith JJ; Ramsey SA; Marelli M; Marzolf B; Hwang D; Saleem RA; Rachubinski RA; Aitchison JD
    Mol Syst Biol; 2007; 3():115. PubMed ID: 17551510
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential effects of chromatin regulators and transcription factors on gene regulation: a nucleosomal perspective.
    Dong D; Shao X; Zhang Z
    Bioinformatics; 2011 Jan; 27(2):147-52. PubMed ID: 21075748
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Illuminating transcription pathways using fluorescent reporter genes and yeast functional genomics.
    Kainth P; Andrews B
    Transcription; 2010; 1(2):76-80. PubMed ID: 21326895
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptional regulatory networks in Saccharomyces cerevisiae.
    Lee TI; Rinaldi NJ; Robert F; Odom DT; Bar-Joseph Z; Gerber GK; Hannett NM; Harbison CT; Thompson CM; Simon I; Zeitlinger J; Jennings EG; Murray HL; Gordon DB; Ren B; Wyrick JJ; Tagne JB; Volkert TL; Fraenkel E; Gifford DK; Young RA
    Science; 2002 Oct; 298(5594):799-804. PubMed ID: 12399584
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Systematic dissection of roles for chromatin regulators in a yeast stress response.
    Weiner A; Chen HV; Liu CL; Rahat A; Klien A; Soares L; Gudipati M; Pfeffner J; Regev A; Buratowski S; Pleiss JA; Friedman N; Rando OJ
    PLoS Biol; 2012; 10(7):e1001369. PubMed ID: 22912562
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcriptional regulation of the genes involved in protein metabolism and processing in Saccharomyces cerevisiae.
    Dikicioglu D; Nightingale DJH; Wood V; Lilley KS; Oliver SG
    FEMS Yeast Res; 2019 Mar; 19(2):. PubMed ID: 30753445
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chromatin repositioning activity and transcription machinery are both recruited by Ace1p in yeast CUP1 activation.
    Wimalarathna RN; Pan PY; Shen CH
    Biochem Biophys Res Commun; 2012 Jun; 422(4):658-63. PubMed ID: 22609398
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gene regulation: a chromatin-based recruitment drive.
    Burgess DJ
    Nat Rev Genet; 2014 Aug; 15(8):513. PubMed ID: 25022905
    [No Abstract]   [Full Text] [Related]  

  • 14. Linking high-resolution metabolic flux phenotypes and transcriptional regulation in yeast modulated by the global regulator Gcn4p.
    Moxley JF; Jewett MC; Antoniewicz MR; Villas-Boas SG; Alper H; Wheeler RT; Tong L; Hinnebusch AG; Ideker T; Nielsen J; Stephanopoulos G
    Proc Natl Acad Sci U S A; 2009 Apr; 106(16):6477-82. PubMed ID: 19346491
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inference of sparse combinatorial-control networks from gene-expression data: a message passing approach.
    Bailly-Bechet M; Braunstein A; Pagnani A; Weigt M; Zecchina R
    BMC Bioinformatics; 2010 Jun; 11():355. PubMed ID: 20587029
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of the repressor Oaf3p in the recruitment of transcription factors and chromatin dynamics during the oleate response.
    Wan Y; Arens CE; Wang S; Zuo X; Zhuo Y; Xing J; Liu H
    Biochem J; 2013 Jan; 449(2):507-17. PubMed ID: 23088601
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial epigenetic control of mono- and bistable gene expression.
    Kelemen JZ; Ratna P; Scherrer S; Becskei A
    PLoS Biol; 2010 Mar; 8(3):e1000332. PubMed ID: 20305717
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-wide analysis of ARS (autonomously replicating sequence) binding factor 1 (Abf1p)-mediated transcriptional regulation in Saccharomyces cerevisiae.
    Miyake T; Reese J; Loch CM; Auble DT; Li R
    J Biol Chem; 2004 Aug; 279(33):34865-72. PubMed ID: 15192094
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The INO80 Complex Requires the Arp5-Ies6 Subcomplex for Chromatin Remodeling and Metabolic Regulation.
    Yao W; King DA; Beckwith SL; Gowans GJ; Yen K; Zhou C; Morrison AJ
    Mol Cell Biol; 2016 Jan; 36(6):979-91. PubMed ID: 26755556
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Communication between levels of transcriptional control improves robustness and adaptivity.
    Tsankov AM; Brown CR; Yu MC; Win MZ; Silver PA; Casolari JM
    Mol Syst Biol; 2006; 2():65. PubMed ID: 17130867
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.