These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 24996099)

  • 1. Transmission phase lapses through a quantum dot in a strong magnetic field.
    Dinaii Y; Gefen Y; Rosenow B
    Phys Rev Lett; 2014 Jun; 112(24):246801. PubMed ID: 24996099
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of the indirect tunneling processes and asymmetry in couplings in orbital Kondo transport through double quantum dots.
    Trocha P
    J Phys Condens Matter; 2012 Feb; 24(5):055303. PubMed ID: 22248545
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mesoscopic to universal crossover of the transmission phase of multilevel quantum dots.
    Karrasch C; Hecht T; Weichselbaum A; Oreg Y; von Delft J; Meden V
    Phys Rev Lett; 2007 May; 98(18):186802. PubMed ID: 17501592
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnetic-field-dependent transmission phase of a double-dot system in a quantum ring.
    Sigrist M; Fuhrer A; Ihn T; Ensslin K; Ulloa SE; Wegscheider W; Bichler M
    Phys Rev Lett; 2004 Aug; 93(6):066802. PubMed ID: 15323649
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-universal transmission phase behaviour of a large quantum dot.
    Edlbauer H; Takada S; Roussely G; Yamamoto M; Tarucha S; Ludwig A; Wieck AD; Meunier T; Bäuerle C
    Nat Commun; 2017 Nov; 8(1):1710. PubMed ID: 29167429
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crossover from 'mesoscopic' to 'universal' phase for electron transmission in quantum dots.
    Avinun-Kalish M; Heiblum M; Zarchin O; Mahalu D; Umansky V
    Nature; 2005 Jul; 436(7050):529-33. PubMed ID: 16049482
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantum phase transition in a single-molecule quantum dot.
    Roch N; Florens S; Bouchiat V; Wernsdorfer W; Balestro F
    Nature; 2008 May; 453(7195):633-7. PubMed ID: 18509439
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mesoscopic features in the transport properties of a Kondo-correlated quantum dot in a magnetic field.
    Camjayi A; Arrachea L
    J Phys Condens Matter; 2014 Jan; 26(3):035602. PubMed ID: 24351510
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SU(4) Fermi liquid state and spin filtering in a double quantum dot system.
    Borda L; Zaránd G; Hofstetter W; Halperin BI; von Delft J
    Phys Rev Lett; 2003 Jan; 90(2):026602. PubMed ID: 12570565
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Control of the strong light-matter interaction between an elongated In_{0.3}Ga_{0.7}As quantum dot and a micropillar cavity using external magnetic fields.
    Reitzenstein S; Münch S; Franeck P; Rahimi-Iman A; Löffler A; Höfling S; Worschech L; Forchel A
    Phys Rev Lett; 2009 Sep; 103(12):127401. PubMed ID: 19792457
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cotunneling current through a two-level quantum dot coupled to magnetic leads: the role of exchange interaction.
    Sharafutdinov AU; Burmistrov IS
    J Phys Condens Matter; 2012 Apr; 24(15):155301. PubMed ID: 22436594
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Josephson current through interacting double quantum dots with spin-orbit coupling.
    Droste S; Andergassen S; Splettstoesser J
    J Phys Condens Matter; 2012 Oct; 24(41):415301. PubMed ID: 23006317
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fano-Kondo and the Kondo box regimes crossover in a quantum dot coupled to a quantum box.
    Apel VM; Orellana PA; Pacheco M; Anda EV
    J Phys Condens Matter; 2013 Dec; 25(50):505601. PubMed ID: 24275637
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlling cavity reflectivity with a single quantum dot.
    Englund D; Faraon A; Fushman I; Stoltz N; Petroff P; Vucković J
    Nature; 2007 Dec; 450(7171):857-61. PubMed ID: 18064008
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantum dots with even number of electrons: kondo effect in a finite magnetic field.
    Pustilnik M; Avishai Y; Kikoin K
    Phys Rev Lett; 2000 Feb; 84(8):1756-9. PubMed ID: 11017618
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transport and current noise characteristics of a T-shape double-quantum-dot system.
    Brown K; Crisan M; Tifrea I
    J Phys Condens Matter; 2009 May; 21(21):215604. PubMed ID: 21825553
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coherent versus sequential electron tunneling in quantum dots.
    Foa Torres LE; Lewenkopf CH; Pastawski HM
    Phys Rev Lett; 2003 Sep; 91(11):116801. PubMed ID: 14525449
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scattering phase of quantum dots: emergence of universal behavior.
    Molina RA; Jalabert RA; Weinmann D; Jacquod P
    Phys Rev Lett; 2012 Feb; 108(7):076803. PubMed ID: 22401237
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Linear and nonlinear optical spectroscopy of a strongly coupled microdisk-quantum dot system.
    Srinivasan K; Painter O
    Nature; 2007 Dec; 450(7171):862-5. PubMed ID: 18064009
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correlation between peak-height modulation and phase lapses in transport through quantum dots.
    Jalabert RA; Molina RA; Weick G; Weinmann D
    Phys Rev E; 2017 Dec; 96(6-1):062208. PubMed ID: 29347399
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.