These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 24996120)

  • 1. Determinants of motion response anisotropies in human early visual cortex: the role of configuration and eccentricity.
    Maloney RT; Watson TL; Clifford CW
    Neuroimage; 2014 Oct; 100():564-79. PubMed ID: 24996120
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Directional anisotropy of motion responses in retinotopic cortex.
    Raemaekers M; Lankheet MJ; Moorman S; Kourtzi Z; van Wezel RJ
    Hum Brain Mapp; 2009 Dec; 30(12):3970-80. PubMed ID: 19449333
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human cortical and behavioral sensitivity to patterns of complex motion at eccentricity.
    Maloney RT; Watson TL; Clifford CW
    J Neurophysiol; 2013 Dec; 110(11):2545-56. PubMed ID: 24027101
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of cortical area V5/MT+ in speed-tuned directional anisotropies in global motion perception.
    Giaschi D; Zwicker A; Young SA; Bjornson B
    Vision Res; 2007 Mar; 47(7):887-98. PubMed ID: 17306855
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Radial biases in the processing of motion and motion-defined contours by human visual cortex.
    Clifford CW; Mannion DJ; McDonald JS
    J Neurophysiol; 2009 Nov; 102(5):2974-81. PubMed ID: 19759326
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integration of motion responses underlying directional motion anisotropy in human early visual cortical areas.
    Schellekens W; Van Wezel RJ; Petridou N; Ramsey NF; Raemaekers M
    PLoS One; 2013; 8(6):e67468. PubMed ID: 23840711
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Motion-defined surface segregation in human visual cortex.
    Vigano GJ; Maloney RT; Clifford CW
    J Cogn Neurosci; 2014 Nov; 26(11):2479-89. PubMed ID: 24738771
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influence of global form on local orientation anisotropies in human visual cortex.
    Mannion DJ; McDonald JS; Clifford CW
    Neuroimage; 2010 Aug; 52(2):600-5. PubMed ID: 20434564
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contribution of large scale biases in decoding of direction-of-motion from high-resolution fMRI data in human early visual cortex.
    Beckett A; Peirce JW; Sanchez-Panchuelo RM; Francis S; Schluppeck D
    Neuroimage; 2012 Nov; 63(3):1623-32. PubMed ID: 22986356
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predictive coding for motion stimuli in human early visual cortex.
    Schellekens W; van Wezel RJ; Petridou N; Ramsey NF; Raemaekers M
    Brain Struct Funct; 2016 Mar; 221(2):879-90. PubMed ID: 25445839
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Representation of Motion Direction in Visual Area MT Accounts for High Sensitivity to Centripetal Motion, Aligning with Efficient Coding of Retinal Motion Statistics.
    Kumano H; Uka T
    J Neurosci; 2023 Aug; 43(33):5893-5904. PubMed ID: 37495384
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatiotemporal frequency and direction sensitivities of human visual areas measured using fMRI.
    Singh KD; Smith AT; Greenlee MW
    Neuroimage; 2000 Nov; 12(5):550-64. PubMed ID: 11034862
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Orientation anisotropies in human visual cortex.
    Mannion DJ; McDonald JS; Clifford CW
    J Neurophysiol; 2010 Jun; 103(6):3465-71. PubMed ID: 20410358
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neuroimaging of direction-selective mechanisms for second-order motion.
    Nishida S; Sasaki Y; Murakami I; Watanabe T; Tootell RB
    J Neurophysiol; 2003 Nov; 90(5):3242-54. PubMed ID: 12917391
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Decoding pattern motion information in V1.
    van Kemenade BM; Seymour K; Christophel TB; Rothkirch M; Sterzer P
    Cortex; 2014 Aug; 57():177-87. PubMed ID: 24905972
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contrast response functions with wide-view stimuli in the human visual cortex.
    Yan T; Wang B; Geng Y; Yan Y; Mu N; Wu J; Guo Q; Tang X; Zeng Y; Peng Y
    Perception; 2014; 43(7):677-93. PubMed ID: 25223111
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Orientation anisotropies in human primary visual cortex depend on contrast.
    Maloney RT; Clifford CW
    Neuroimage; 2015 Oct; 119():129-45. PubMed ID: 26093331
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatial frequency tuning in human retinotopic visual areas.
    Henriksson L; Nurminen L; Hyvärinen A; Vanni S
    J Vis; 2008 Aug; 8(10):5.1-13. PubMed ID: 19146347
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-dimensional mapping of the central and parafoveal visual field to human visual cortex.
    Schira MM; Wade AR; Tyler CW
    J Neurophysiol; 2007 Jun; 97(6):4284-95. PubMed ID: 17360817
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential processing of the direction and focus of expansion of optic flow stimuli in areas MST and V3A of the human visual cortex.
    Strong SL; Silson EH; Gouws AD; Morland AB; McKeefry DJ
    J Neurophysiol; 2017 Jun; 117(6):2209-2217. PubMed ID: 28298300
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.