BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 24996201)

  • 1. Implementation of zero-valent iron (ZVI) into drinking water supply - role of the ZVI and biological processes.
    Kowalski KP; Søgaard EG
    Chemosphere; 2014 Dec; 117():108-14. PubMed ID: 24996201
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Arsenic removal by discontinuous ZVI two steps system for drinking water production at household scale.
    Casentini B; Falcione FT; Amalfitano S; Fazi S; Rossetti S
    Water Res; 2016 Dec; 106():135-145. PubMed ID: 27710797
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Arsenic removal from drinking water by a household sand filter in Vietnam--effect of filter usage practices on arsenic removal efficiency and microbiological water quality.
    Nitzsche KS; Lan VM; Trang PT; Viet PH; Berg M; Voegelin A; Planer-Friedrich B; Zahoransky J; Müller SK; Byrne JM; Schröder C; Behrens S; Kappler A
    Sci Total Environ; 2015 Jan; 502():526-36. PubMed ID: 25300017
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Arsenic sorption on zero-valent iron-biochar complexes.
    Bakshi S; Banik C; Rathke SJ; Laird DA
    Water Res; 2018 Jun; 137():153-163. PubMed ID: 29554531
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of zero-valent iron as a permeable reactive barrier for long-term removal of arsenic compounds from synthetic water.
    Lee KJ; Lee Y; Yoon J; Kamala-Kannan S; Park SM; Oh BT
    Environ Technol; 2009 Dec; 30(13):1425-34. PubMed ID: 20088207
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fate of low arsenic concentrations during full-scale aeration and rapid filtration.
    Gude JCJ; Rietveld LC; van Halem D
    Water Res; 2016 Jan; 88():566-574. PubMed ID: 26547752
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design of Gravel-Sand Filter for Arsenic Removal: A Case Study of Muzaffargarh District in Pakistan.
    Abbas Y; Majeed S; Ali S; Ahmad HB; Akhtar N; Yokota H
    Water Environ Res; 2018 Dec; 90(12):2106-2113. PubMed ID: 30538019
    [No Abstract]   [Full Text] [Related]  

  • 8. Mobility and redox transformation of arsenic during treatment of artificially recharged groundwater for drinking water production.
    Ahmad A; Heijnen L; de Waal L; Battaglia-Brunet F; Oorthuizen W; Pieterse B; Bhattacharya P; van der Wal A
    Water Res; 2020 Jul; 178():115826. PubMed ID: 32361349
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Removal of As from groundwater by in situ bioprecipitation and zero-valent iron.
    Tkaczynska A
    Water Sci Technol; 2013; 68(9):2055-60. PubMed ID: 24225108
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advantages of low pH and limited oxygenation in arsenite removal from water by zero-valent iron.
    Klas S; Kirk DW
    J Hazard Mater; 2013 May; 252-253():77-82. PubMed ID: 23500792
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidation and removal of arsenic (III) from aerated groundwater by filtration through sand and zero-valent iron.
    Leupin OX; Hug SJ
    Water Res; 2005 May; 39(9):1729-40. PubMed ID: 15899271
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Zero-valent iron for the abatement of arsenate and selenate from flowback water of hydraulic fracturing.
    Sun Y; Chen SS; Tsang DCW; Graham NJD; Ok YS; Feng Y; Li XD
    Chemosphere; 2017 Jan; 167():163-170. PubMed ID: 27718428
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microbial community composition of a household sand filter used for arsenic, iron, and manganese removal from groundwater in Vietnam.
    Nitzsche KS; Weigold P; Lösekann-Behrens T; Kappler A; Behrens S
    Chemosphere; 2015 Nov; 138():47-59. PubMed ID: 26037816
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simple combination of oxidants with zero-valent-iron (ZVI) achieved very rapid and highly efficient removal of heavy metals from water.
    Guo X; Yang Z; Dong H; Guan X; Ren Q; Lv X; Jin X
    Water Res; 2016 Jan; 88():671-680. PubMed ID: 26575476
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reductive removal of selenate by zero-valent iron: The roles of aqueous Fe(2+) and corrosion products, and selenate removal mechanisms.
    Tang C; Huang YH; Zeng H; Zhang Z
    Water Res; 2014 Dec; 67():166-74. PubMed ID: 25269108
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The use of zero-valent iron for groundwater remediation and wastewater treatment: a review.
    Fu F; Dionysiou DD; Liu H
    J Hazard Mater; 2014 Feb; 267():194-205. PubMed ID: 24457611
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arsenic Removal from Groundwater by Solar Driven Inline-Electrolytic Induced Co-Precipitation and Filtration-A Long Term Field Test Conducted in West Bengal.
    Otter P; Malakar P; Jana BB; Grischek T; Benz F; Goldmaier A; Feistel U; Jana J; Lahiri S; Alvarez JA
    Int J Environ Res Public Health; 2017 Oct; 14(10):. PubMed ID: 28974053
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bacterial capture and inactivation in sand filtration systems with addition of zero-valent iron as permeable layer under both slow and fast filtration conditions.
    Wang S; Zhang M; He L; Li M; Zhang X; Liu F; Tong M
    J Hazard Mater; 2022 Aug; 436():129122. PubMed ID: 35596992
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sorption and desorption of arsenic to ferrihydrite in a sand filter.
    Jessen S; Larsen F; Koch CB; Arvin E
    Environ Sci Technol; 2005 Oct; 39(20):8045-51. PubMed ID: 16295873
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kanchan arsenic filters in the lowlands of Nepal: mode of operation, arsenic removal, and future improvements.
    Mueller B; Dangol B; Ngai TKK; Hug SJ
    Environ Geochem Health; 2021 Jan; 43(1):375-389. PubMed ID: 32974885
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.