These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 24996450)

  • 1. Super liquid-repellent layers: The smaller the better.
    Butt HJ; Vollmer D; Papadopoulos P
    Adv Colloid Interface Sci; 2015 Aug; 222():104-9. PubMed ID: 24996450
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of surface texturing on superoleophobicity, contact angle hysteresis, and "robustness".
    Zhao H; Park KC; Law KY
    Langmuir; 2012 Oct; 28(42):14925-34. PubMed ID: 22992132
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Range of applicability of the Wenzel and Cassie-Baxter equations for superhydrophobic surfaces.
    Erbil HY; Cansoy CE
    Langmuir; 2009 Dec; 25(24):14135-45. PubMed ID: 19630435
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study on the wetting transition of a liquid droplet sitting on a square-array cosine wave-like patterned surface.
    Promraksa A; Chuang YC; Chen LJ
    J Colloid Interface Sci; 2014 Mar; 418():8-19. PubMed ID: 24461812
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microstructured superhydrorepellent surfaces: effect of drop pressure on fakir-state stability and apparent contact angles.
    Afferrante L; Carbone G
    J Phys Condens Matter; 2010 Aug; 22(32):325107. PubMed ID: 21386489
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Drop rebound after impact: the role of the receding contact angle.
    Antonini C; Villa F; Bernagozzi I; Amirfazli A; Marengo M
    Langmuir; 2013 Dec; 29(52):16045-50. PubMed ID: 24028086
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of hydraulic pressure on the stability and transition of wetting modes of superhydrophobic surfaces.
    Zheng QS; Yu Y; Zhao ZH
    Langmuir; 2005 Dec; 21(26):12207-12. PubMed ID: 16342993
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mean-field theory of liquid droplets on roughened solid surfaces: application to superhydrophobicity.
    Porcheron F; Monson PA
    Langmuir; 2006 Feb; 22(4):1595-601. PubMed ID: 16460079
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pressure induced transition between superhydrophobic states: configuration diagrams and effect of surface feature size.
    Liu B; Lange FF
    J Colloid Interface Sci; 2006 Jun; 298(2):899-909. PubMed ID: 16480735
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication, surface properties, and origin of superoleophobicity for a model textured surface.
    Zhao H; Law KY; Sambhy V
    Langmuir; 2011 May; 27(10):5927-35. PubMed ID: 21486088
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contact angle hysteresis on regular pillar-like hydrophobic surfaces.
    Yeh KY; Chen LJ; Chang JY
    Langmuir; 2008 Jan; 24(1):245-51. PubMed ID: 18067331
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An effective medium approach to predict the apparent contact angle of drops on super-hydrophobic randomly rough surfaces.
    Bottiglione F; Carbone G
    J Phys Condens Matter; 2015 Jan; 27(1):015009. PubMed ID: 25469488
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wetting of soft superhydrophobic micropillar arrays.
    Papadopoulos P; Pinchasik BE; Tress M; Vollmer D; Kappl M; Butt HJ
    Soft Matter; 2018 Sep; 14(36):7429-7434. PubMed ID: 30183043
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wetting Transition on Liquid-Repellent Surfaces Probed by Surface Force Measurements and Confocal Imaging.
    Eriksson M; Claesson PM; Järn M; Tuominen M; Wallqvist V; Schoelkopf J; Gane PAC; Swerin A
    Langmuir; 2019 Oct; 35(41):13275-13285. PubMed ID: 31547659
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaporation of water droplets on soft patterned surfaces.
    Chuang YC; Chu CK; Lin SY; Chen LJ
    Soft Matter; 2014 May; 10(19):3394-403. PubMed ID: 24643481
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How Water Advances on Superhydrophobic Surfaces.
    Schellenberger F; Encinas N; Vollmer D; Butt HJ
    Phys Rev Lett; 2016 Mar; 116(9):096101. PubMed ID: 26991185
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hybrid surfaces combining electropolymerization and lithography: fabrication and wetting properties.
    Cohen C; Darmanin T; Priam J; Guittard F; Noblin X
    Soft Matter; 2019 Dec; 15(45):9352-9358. PubMed ID: 31693042
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Water wetting transition parameters of perfluorinated substrates with periodically distributed flat-top microscale obstacles.
    Barbieri L; Wagner E; Hoffmann P
    Langmuir; 2007 Feb; 23(4):1723-34. PubMed ID: 17279650
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wrinkled, dual-scale structures of diamond-like carbon (DLC) for superhydrophobicity.
    Rahmawan Y; Moon MW; Kim KS; Lee KR; Suh KY
    Langmuir; 2010 Jan; 26(1):484-91. PubMed ID: 19810723
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.