BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 24996825)

  • 1. Transcriptomic analysis of the role of Rim101/PacC in the adaptation of Ustilago maydis to an alkaline environment.
    Franco-Frías E; Ruiz-Herrera J; Aréchiga-Carvajal ET
    Microbiology (Reading); 2014 Sep; 160(Pt 9):1985-1998. PubMed ID: 24996825
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The RIM101/pacC homologue from the basidiomycete Ustilago maydis is functional in multiple pH-sensitive phenomena.
    Aréchiga-Carvajal ET; Ruiz-Herrera J
    Eukaryot Cell; 2005 Jun; 4(6):999-1008. PubMed ID: 15947192
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of a novel member of the pH responsive pathway Pal/Rim in Ustilago maydis.
    Cervantes-Montelongo JA; Ruiz-Herrera J
    J Basic Microbiol; 2019 Jan; 59(1):14-23. PubMed ID: 30357888
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adaptation of Ustilago maydis to extreme pH values: A transcriptomic analysis.
    Cervantes-Montelongo JA; Aréchiga-Carvajal ET; Ruiz-Herrera J
    J Basic Microbiol; 2016 Nov; 56(11):1222-1233. PubMed ID: 27545298
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The regulation of different metabolic pathways through the Pal/Rim pathway in Ustilago maydis.
    Fonseca-García C; León-Ramírez CG; Ruiz-Herrera J
    FEMS Yeast Res; 2012 Aug; 12(5):547-56. PubMed ID: 22443138
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptional analysis of the adaptation of Ustilago maydis during growth under nitrogen fixation conditions.
    Sánchez-Arreguin JA; Hernandez-Oñate MA; León-Ramirez CG; Ruiz-Herrera J
    J Basic Microbiol; 2017 Jul; 57(7):597-604. PubMed ID: 28429489
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcriptomic analysis of the dimorphic transition of Ustilago maydis induced in vitro by a change in pH.
    Martínez-Soto D; Ruiz-Herrera J
    Fungal Genet Biol; 2013; 58-59():116-25. PubMed ID: 23994320
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The UMAG_00031 gene from Ustilago maydis encodes a putative membrane protein involved in pH control and morphogenesis.
    Cervantes-Montelongo JA; Silva-Martínez GA; Pliego-Arreaga R; Guevara-Olvera L; Ruiz-Herrera J
    Arch Microbiol; 2020 Oct; 202(8):2221-2232. PubMed ID: 32529509
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional analysis of the pH responsive pathway Pal/Rim in the phytopathogenic basidiomycete Ustilago maydis.
    Cervantes-Chávez JA; Ortiz-Castellanos L; Tejeda-Sartorius M; Gold S; Ruiz-Herrera J
    Fungal Genet Biol; 2010 May; 47(5):446-57. PubMed ID: 20153837
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of genes involved in cell wall synthesis and structure during Ustilago maydis dimorphism.
    Robledo-Briones M; Ruiz-Herrera J
    FEMS Yeast Res; 2013 Feb; 13(1):74-84. PubMed ID: 23167842
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Ustilago maydis gene involved in H2O2 detoxification is required for virulence.
    Molina L; Kahmann R
    Plant Cell; 2007 Jul; 19(7):2293-309. PubMed ID: 17616735
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of the expression of the whole genome of Ustilago maydis by a MAPK pathway.
    Martínez-Soto D; Ruiz-Herrera J
    Arch Microbiol; 2015 May; 197(4):575-88. PubMed ID: 25666931
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of PacC on the environmental stress adaptability and cell wall components of Ganoderma lucidum.
    Hu Y; Lian L; Xia J; Hu S; Xu W; Zhu J; Ren A; Shi L; Zhao MW
    Microbiol Res; 2020 Jan; 230():126348. PubMed ID: 31639624
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Cryptococcus neoformans alkaline response pathway: identification of a novel rim pathway activator.
    Ost KS; O'Meara TR; Huda N; Esher SK; Alspaugh JA
    PLoS Genet; 2015 Apr; 11(4):e1005159. PubMed ID: 25859664
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptomic analysis of the GCN5 gene reveals mechanisms of the epigenetic regulation of virulence and morphogenesis in Ustilago maydis.
    Martínez-Soto D; González-Prieto JM; Ruiz-Herrera J
    FEMS Yeast Res; 2015 Sep; 15(6):. PubMed ID: 26126523
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strain-specific variation in a soilborne phytopathogenic fungus for the expression of genes involved in pH signal transduction pathway, pathogenesis and saprophytic survival in response to environmental pH changes.
    Daval S; Lebreton L; Gracianne C; Guillerm-Erckelboudt AY; Boutin M; Marchi M; Gazengel K; Sarniguet A
    Fungal Genet Biol; 2013 Dec; 61():80-9. PubMed ID: 24120452
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptomic analysis of basidiocarp development in Ustilago maydis (DC) Cda.
    León-Ramírez CG; Cabrera-Ponce JL; Martínez-Soto D; Sánchez-Arreguin A; Aréchiga-Carvajal ET; Ruiz-Herrera J
    Fungal Genet Biol; 2017 Apr; 101():34-45. PubMed ID: 28285895
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chromatin modification factors in plant pathogenic fungi: Insights from Ustilago maydis.
    Elías-Villalobos A; Barrales RR; Ibeas JI
    Fungal Genet Biol; 2019 Aug; 129():52-64. PubMed ID: 30980908
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Autophagosomes accumulation in the vacuoles of the fungus Ustilago maydis and the role of proteases in their digestion.
    Soberanes-Gutiérrez CV; Vázquez-Carrada M; López-Villegas EO; Vega-Arreguín JC; Villa-Tanaca L; Ruiz-Herrera J
    FEMS Microbiol Lett; 2019 May; 366(10):. PubMed ID: 31183499
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Zinc uptake in the Basidiomycota: Characterization of zinc transporters in
    Martha-Paz AM; Eide D; Mendoza-Cózatl D; Castro-Guerrero NA; Aréchiga-Carvajal ET
    Mol Membr Biol; 2019 Dec; 35(1):39-50. PubMed ID: 31617434
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.