These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 24997163)
1. Growth on poly(L-lactic acid) porous scaffold preserves CD73 and CD90 immunophenotype markers of rat bone marrow mesenchymal stromal cells. Zamparelli A; Zini N; Cattini L; Spaletta G; Dallatana D; Bassi E; Barbaro F; Iafisco M; Mosca S; Parrilli A; Fini M; Giardino R; Sandri M; Sprio S; Tampieri A; Maraldi NM; Toni R J Mater Sci Mater Med; 2014 Oct; 25(10):2421-36. PubMed ID: 24997163 [TBL] [Abstract][Full Text] [Related]
2. Enhancing osteoconduction of PLLA-based nanocomposite scaffolds for bone regeneration using different biomimetic signals to MSCs. Ciapetti G; Granchi D; Devescovi V; Baglio SR; Leonardi E; Martini D; Jurado MJ; Olalde B; Armentano I; Kenny JM; Walboomers FX; Alava JI; Baldini N Int J Mol Sci; 2012; 13(2):2439-2458. PubMed ID: 22408463 [TBL] [Abstract][Full Text] [Related]
3. Electrophoretic Deposition of Dexamethasone-Loaded Mesoporous Silica Nanoparticles onto Poly(L-Lactic Acid)/Poly(ε-Caprolactone) Composite Scaffold for Bone Tissue Engineering. Qiu K; Chen B; Nie W; Zhou X; Feng W; Wang W; Chen L; Mo X; Wei Y; He C ACS Appl Mater Interfaces; 2016 Feb; 8(6):4137-48. PubMed ID: 26736029 [TBL] [Abstract][Full Text] [Related]
4. Novel porous scaffolds of poly(lactic acid) produced by phase-separation using room temperature ionic liquid and the assessments of biocompatibility. Lee HY; Jin GZ; Shin US; Kim JH; Kim HW J Mater Sci Mater Med; 2012 May; 23(5):1271-9. PubMed ID: 22382734 [TBL] [Abstract][Full Text] [Related]
5. Culture of human bone marrow-derived mesenchymal stem cells on of poly(L-lactic acid) scaffolds: potential application for the tissue engineering of cartilage. Izal I; Aranda P; Sanz-Ramos P; Ripalda P; Mora G; Granero-Moltó F; Deplaine H; Gómez-Ribelles JL; Ferrer GG; Acosta V; Ochoa I; García-Aznar JM; Andreu EJ; Monleón-Pradas M; Doblaré M; Prósper F Knee Surg Sports Traumatol Arthrosc; 2013 Aug; 21(8):1737-50. PubMed ID: 22864678 [TBL] [Abstract][Full Text] [Related]
6. An improved surface for enhanced stem cell proliferation and osteogenic differentiation using electrospun composite PLLA/P123 scaffold. Birhanu G; Akbari Javar H; Seyedjafari E; Zandi-Karimi A; Dusti Telgerd M Artif Cells Nanomed Biotechnol; 2018 Sep; 46(6):1274-1281. PubMed ID: 28835133 [TBL] [Abstract][Full Text] [Related]
7. [Preparation and osteogenic properties of poly ( Chen S; Du C Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2018 Sep; 32(9):1123-1130. PubMed ID: 30701727 [TBL] [Abstract][Full Text] [Related]
8. PGS Scaffolds Promote the In Vivo Survival and Directional Differentiation of Bone Marrow Mesenchymal Stem Cells Restoring the Morphology and Function of Wounded Rat Uterus. Xiao B; Yang W; Lei D; Huang J; Yin Y; Zhu Y; You Z; Wang F; Sun S Adv Healthc Mater; 2019 Mar; 8(5):e1801455. PubMed ID: 30734535 [TBL] [Abstract][Full Text] [Related]
9. 3D scaffold of PLLA/pearl and PLLA/nacre powder for bone regeneration. Liu Y; Huang Q; Feng Q Biomed Mater; 2013 Dec; 8(6):065001. PubMed ID: 24225162 [TBL] [Abstract][Full Text] [Related]
10. [Research of osteoblast-induced rat mesenchymal stem cells cocultured with beta-TCP/PLLA composite of different ratio]. Wu Q; Tang Y; Chen H; Wu J; Yin G Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2005 Apr; 22(2):242-6. PubMed ID: 15884527 [TBL] [Abstract][Full Text] [Related]
11. Enhanced human bone marrow mesenchymal stem cell functions in novel 3D cartilage scaffolds with hydrogen treated multi-walled carbon nanotubes. Holmes B; Castro NJ; Li J; Keidar M; Zhang LG Nanotechnology; 2013 Sep; 24(36):365102. PubMed ID: 23959974 [TBL] [Abstract][Full Text] [Related]
12. Enhanced osteogenic differentiation of mesenchymal stem cells on metal-organic framework based on copper, zinc, and imidazole coated poly-l-lactic acid nanofiber scaffolds. Telgerd MD; Sadeghinia M; Birhanu G; Daryasari MP; Zandi-Karimi A; Sadeghinia A; Akbarijavar H; Karami MH; Seyedjafari E J Biomed Mater Res A; 2019 Aug; 107(8):1841-1848. PubMed ID: 31033136 [TBL] [Abstract][Full Text] [Related]
13. Osteochondral repair using porous poly(lactide-co-glycolide)/nano-hydroxyapatite hybrid scaffolds with undifferentiated mesenchymal stem cells in a rat model. Xue D; Zheng Q; Zong C; Li Q; Li H; Qian S; Zhang B; Yu L; Pan Z J Biomed Mater Res A; 2010 Jul; 94(1):259-70. PubMed ID: 20166224 [TBL] [Abstract][Full Text] [Related]
14. Induced Pluripotent Stem Cell-Derived Mesenchymal Stromal Cells Are Functionally and Genetically Different From Bone Marrow-Derived Mesenchymal Stromal Cells. Xu M; Shaw G; Murphy M; Barry F Stem Cells; 2019 Jun; 37(6):754-765. PubMed ID: 30779868 [TBL] [Abstract][Full Text] [Related]
15. Effect of the physicochemical properties of pure or chitosan-coated poly(L-lactic acid)scaffolds on the chondrogenic differentiation of mesenchymal stem cells from osteoarthritic patients. Magalhães J; Lebourg M; Deplaine H; Gómez Ribelles JL; Blanco FJ Tissue Eng Part A; 2015 Feb; 21(3-4):716-28. PubMed ID: 25297938 [TBL] [Abstract][Full Text] [Related]
16. Porous nano-HA/collagen/PLLA scaffold containing chitosan microspheres for controlled delivery of synthetic peptide derived from BMP-2. Niu X; Feng Q; Wang M; Guo X; Zheng Q J Control Release; 2009 Mar; 134(2):111-7. PubMed ID: 19100794 [TBL] [Abstract][Full Text] [Related]
17. Poly(L-lactic acid) nanocylinders as nanofibrous structures for macroporous gelatin scaffolds. Lee JB; Jeong SI; Bae MS; Heo DN; Heo JS; Hwang YS; Lee HW; Kwon IK J Nanosci Nanotechnol; 2011 Jul; 11(7):6371-6. PubMed ID: 22121718 [TBL] [Abstract][Full Text] [Related]