These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Structure, activity and interactions of the cysteine deleted analog of tachyplesin-1 with lipopolysaccharide micelle: Mechanistic insights into outer-membrane permeabilization and endotoxin neutralization. Saravanan R; Mohanram H; Joshi M; Domadia PN; Torres J; Ruedl C; Bhattacharjya S Biochim Biophys Acta; 2012 Jul; 1818(7):1613-24. PubMed ID: 22464970 [TBL] [Abstract][Full Text] [Related]
3. Structure, interactions, and antibacterial activities of MSI-594 derived mutant peptide MSI-594F5A in lipopolysaccharide micelles: role of the helical hairpin conformation in outer-membrane permeabilization. Domadia PN; Bhunia A; Ramamoorthy A; Bhattacharjya S J Am Chem Soc; 2010 Dec; 132(51):18417-28. PubMed ID: 21128620 [TBL] [Abstract][Full Text] [Related]
4. Structures of β-hairpin antimicrobial protegrin peptides in lipopolysaccharide membranes: mechanism of gram selectivity obtained from solid-state nuclear magnetic resonance. Su Y; Waring AJ; Ruchala P; Hong M Biochemistry; 2011 Mar; 50(12):2072-83. PubMed ID: 21302955 [TBL] [Abstract][Full Text] [Related]
6. NMR Structures and Interactions of Antimicrobial Peptides with Lipopolysaccharide: Connecting Structures to Functions. Bhattacharjya S Curr Top Med Chem; 2016; 16(1):4-15. PubMed ID: 26139110 [TBL] [Abstract][Full Text] [Related]
7. Design of non-cysteine-containing antimicrobial beta-hairpins: structure-activity relationship studies with linear protegrin-1 analogues. Lai JR; Huck BR; Weisblum B; Gellman SH Biochemistry; 2002 Oct; 41(42):12835-42. PubMed ID: 12379126 [TBL] [Abstract][Full Text] [Related]
8. Salt-resistant short antimicrobial peptides. Mohanram H; Bhattacharjya S Biopolymers; 2016 May; 106(3):345-56. PubMed ID: 26849911 [TBL] [Abstract][Full Text] [Related]
9. NMR structure of temporin-1 ta in lipopolysaccharide micelles: mechanistic insight into inactivation by outer membrane. Saravanan R; Joshi M; Mohanram H; Bhunia A; Mangoni ML; Bhattacharjya S PLoS One; 2013; 8(9):e72718. PubMed ID: 24039798 [TBL] [Abstract][Full Text] [Related]
10. Membranolytic selectivity of cystine-stabilized cyclic protegrins. Tam JP; Wu C; Yang JL Eur J Biochem; 2000 Jun; 267(11):3289-300. PubMed ID: 10824115 [TBL] [Abstract][Full Text] [Related]
11. Conformation, dynamics, and insertion of a noncysteine-containing protegrin-1 analogue in lipid membranes from solid-state NMR spectroscopy. Mani R; Waring AJ; Hong M Chembiochem; 2007 Oct; 8(15):1877-84. PubMed ID: 17868158 [TBL] [Abstract][Full Text] [Related]
12. 'Lollipop'-shaped helical structure of a hybrid antimicrobial peptide of temporin B-lipopolysaccharide binding motif and mapping cationic residues in antibacterial activity. Mohanram H; Bhattacharjya S Biochim Biophys Acta; 2016 Jun; 1860(6):1362-72. PubMed ID: 27015761 [TBL] [Abstract][Full Text] [Related]
13. NMR structures and interactions of temporin-1Tl and temporin-1Tb with lipopolysaccharide micelles: mechanistic insights into outer membrane permeabilization and synergistic activity. Bhunia A; Saravanan R; Mohanram H; Mangoni ML; Bhattacharjya S J Biol Chem; 2011 Jul; 286(27):24394-406. PubMed ID: 21586570 [TBL] [Abstract][Full Text] [Related]
14. An intimate link between antimicrobial peptide sequence diversity and binding to essential components of bacterial membranes. Schmitt P; Rosa RD; Destoumieux-Garzón D Biochim Biophys Acta; 2016 May; 1858(5):958-70. PubMed ID: 26498397 [TBL] [Abstract][Full Text] [Related]
15. Gram-positive bacterial cell envelopes: The impact on the activity of antimicrobial peptides. Malanovic N; Lohner K Biochim Biophys Acta; 2016 May; 1858(5):936-46. PubMed ID: 26577273 [TBL] [Abstract][Full Text] [Related]
16. Importance of the disulfide bridges in the antibacterial activity of human hepcidin. Hocquellet A; le Senechal C; Garbay B Peptides; 2012 Aug; 36(2):303-7. PubMed ID: 22705624 [TBL] [Abstract][Full Text] [Related]
17. Designing potent antimicrobial peptides by disulphide linked dimerization and N-terminal lipidation to increase antimicrobial activity and membrane perturbation: Structural insights into lipopolysaccharide binding. Datta A; Kundu P; Bhunia A J Colloid Interface Sci; 2016 Jan; 461():335-345. PubMed ID: 26407061 [TBL] [Abstract][Full Text] [Related]
18. Linking dual mode of action of host defense antimicrobial peptide thanatin: Structures, lipopolysaccharide and LptA Sinha S; Dhanabal VB; Sperandeo P; Polissi A; Bhattacharjya S Biochim Biophys Acta Biomembr; 2022 Mar; 1864(3):183839. PubMed ID: 34915021 [TBL] [Abstract][Full Text] [Related]
19. In vitro activity of novel in silico-developed antimicrobial peptides against a panel of bacterial pathogens. Romani AA; Baroni MC; Taddei S; Ghidini F; Sansoni P; Cavirani S; Cabassi CS J Pept Sci; 2013 Sep; 19(9):554-65. PubMed ID: 23893489 [TBL] [Abstract][Full Text] [Related]
20. NMR structure of pardaxin, a pore-forming antimicrobial peptide, in lipopolysaccharide micelles: mechanism of outer membrane permeabilization. Bhunia A; Domadia PN; Torres J; Hallock KJ; Ramamoorthy A; Bhattacharjya S J Biol Chem; 2010 Feb; 285(6):3883-3895. PubMed ID: 19959835 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]