These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 24997576)

  • 1. Pharmacologically active metabolites, combination screening and target identification-driven drug repositioning in antituberculosis drug discovery.
    Kigondu EM; Wasuna A; Warner DF; Chibale K
    Bioorg Med Chem; 2014 Aug; 22(16):4453-61. PubMed ID: 24997576
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Development of antituberculous drugs: current status and future prospects].
    Tomioka H; Namba K
    Kekkaku; 2006 Dec; 81(12):753-74. PubMed ID: 17240921
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro susceptibility of Mycobacterium tuberculosis to fusidic acid.
    Cicek-Saydam C; Cavusoglu C; Burhanoglu D; Hilmioglu S; Ozkalay N; Bilgic A
    Clin Microbiol Infect; 2001 Dec; 7(12):700-2. PubMed ID: 11843915
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Repurposed drug candidates for antituberculosis therapy.
    An Q; Li C; Chen Y; Deng Y; Yang T; Luo Y
    Eur J Med Chem; 2020 Apr; 192():112175. PubMed ID: 32126450
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Drug repurposing: Fusidic acid as a potential inhibitor of M. tuberculosis FtsZ polymerization - Insight from DFT calculations, molecular docking and molecular dynamics simulations.
    Akinpelu OI; Lawal MM; Kumalo HM; Mhlongo NN
    Tuberculosis (Edinb); 2020 Mar; 121():101920. PubMed ID: 32279872
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New tuberculosis drugs on the horizon.
    Cole ST; Riccardi G
    Curr Opin Microbiol; 2011 Oct; 14(5):570-6. PubMed ID: 21821466
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Perspective: Challenges and opportunities in TB drug discovery from phenotypic screening.
    Manjunatha UH; Smith PW
    Bioorg Med Chem; 2015 Aug; 23(16):5087-97. PubMed ID: 25577708
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reactive dirty fragments: implications for tuberculosis drug discovery.
    Gopal P; Dick T
    Curr Opin Microbiol; 2014 Oct; 21():7-12. PubMed ID: 25078318
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Is repositioning of drugs a viable alternative in the treatment of tuberculosis?
    Palomino JC; Martin A
    J Antimicrob Chemother; 2013 Feb; 68(2):275-83. PubMed ID: 23075693
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recognizing drug targets using evolutionary information: implications for repurposing FDA-approved drugs against Mycobacterium tuberculosis H37Rv.
    Ramakrishnan G; Chandra NR; Srinivasan N
    Mol Biosyst; 2015 Dec; 11(12):3316-31. PubMed ID: 26429199
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification and validation of novel drug targets in Mycobacterium tuberculosis.
    Singh V; Mizrahi V
    Drug Discov Today; 2017 Mar; 22(3):503-509. PubMed ID: 27649943
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving the tuberculosis drug development pipeline.
    Evangelopoulos D; McHugh TD
    Chem Biol Drug Des; 2015 Nov; 86(5):951-60. PubMed ID: 25772393
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antituberculosis compounds from a deep-sea-derived fungus Aspergillus sp. SCSIO Ind09F01.
    Luo X; Zhou X; Lin X; Qin X; Zhang T; Wang J; Tu Z; Yang B; Liao S; Tian Y; Pang X; Kaliyaperumal K; Li JL; Tao H; Liu Y
    Nat Prod Res; 2017 Aug; 31(16):1958-1962. PubMed ID: 28068839
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of Mycobacterium tuberculosis whole cell screening hits as potential antituberculosis agents.
    Cooper CB
    J Med Chem; 2013 Oct; 56(20):7755-60. PubMed ID: 23927683
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rv0684/
    Singh V; Dziwornu GA; Mabhula A; Chibale K
    ACS Infect Dis; 2021 Aug; 7(8):2437-2444. PubMed ID: 34196521
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design, synthesis and investigation on the structure-activity relationships of N-substituted 2-aminothiazole derivatives as antitubercular agents.
    Pieroni M; Wan B; Cho S; Franzblau SG; Costantino G
    Eur J Med Chem; 2014 Jan; 72():26-34. PubMed ID: 24333612
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent advances in the research of heterocyclic compounds as antitubercular agents.
    Yan M; Ma S
    ChemMedChem; 2012 Dec; 7(12):2063-75. PubMed ID: 23042656
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Target discovery focused approaches to overcome bottlenecks in the exploitation of antimycobacterial natural products.
    Baptista R; Bhowmick S; Nash RJ; Baillie L; Mur LA
    Future Med Chem; 2018 Apr; 10(7):811-822. PubMed ID: 29569936
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Antituberculous action of a new antibiotic, Lividomycin. Effect on experimental tuberculosis of mice and cross resistance with other antituberculous agents].
    Tsukamura M; Mizuno S; Yamamoto M
    Kekkaku; 1970 Aug; 45(8):263-72. PubMed ID: 4989999
    [No Abstract]   [Full Text] [Related]  

  • 20. Structure-activity relationship analyses of fusidic acid derivatives highlight crucial role of the C-21 carboxylic acid moiety to its anti-mycobacterial activity.
    Singh K; Kaur G; Shanika PS; Dziwornu GA; Okombo J; Chibale K
    Bioorg Med Chem; 2020 Jul; 28(13):115530. PubMed ID: 32362386
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.