BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

529 related articles for article (PubMed ID: 24997954)

  • 1. Inhibition of iron (III) minerals and acidification on the reductive dechlorination of trichloroethylene.
    Paul L; Smolders E
    Chemosphere; 2014 Sep; 111():471-7. PubMed ID: 24997954
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of microbial trichloroethylene dechlorination [corrected] by Fe (III) reduction depends on Fe mineralogy: a batch study using the bioaugmentation culture KB-1.
    Paul L; Herrmann S; Koch CB; Philips J; Smolders E
    Water Res; 2013 May; 47(7):2543-54. PubMed ID: 23490101
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioenhanced dissolution of dense non-aqueous phase of trichloroethylene as affected by iron reducing conditions: model systems and environmental samples.
    Paul L; Smolders E
    Chemosphere; 2015 Jan; 119():1113-1119. PubMed ID: 25460750
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of ferric iron on complete dechlorination of trichloroethylene (TCE) to ethene: Fe(III) reduction does not always inhibit complete dechlorination.
    Wei N; Finneran KT
    Environ Sci Technol; 2011 Sep; 45(17):7422-30. PubMed ID: 21777002
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Groundwater geochemical constituents controlling the reductive dechlorination of TCE by nZVI: Evidence from diverse anaerobic corrosion mechanisms of nZVI.
    Yang X; Zhang C; Liu F; Tang J
    Chemosphere; 2021 Jan; 262():127707. PubMed ID: 32755691
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Depassivation of aged Fe 0 by divalent cations: correlation between contaminant degradation and surface complexation constants.
    Liu T; Li X; Waite TD
    Environ Sci Technol; 2014 Dec; 48(24):14564-71. PubMed ID: 25383907
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Field assessment of carboxymethyl cellulose stabilized iron nanoparticles for in situ destruction of chlorinated solvents in source zones.
    He F; Zhao D; Paul C
    Water Res; 2010 Apr; 44(7):2360-70. PubMed ID: 20106501
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acidification due to microbial dechlorination near a trichloroethene DNAPL is overcome with pH buffer or formate as electron donor: experimental demonstration in diffusion-cells.
    Philips J; Maes N; Springael D; Smolders E
    J Contam Hydrol; 2013 Apr; 147():25-33. PubMed ID: 23500838
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Iron and arsenic release from aquifer solids in response to biostimulation.
    McLean JE; Dupont RR; Sorensen DL
    J Environ Qual; 2006; 35(4):1193-203. PubMed ID: 16825439
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reductive dechlorination of chlorinated hydrocarbons as non-aqueous phase liquid (NAPL): preliminary investigation on effects of cement doses.
    Do SH; Batchelor B
    Sci Total Environ; 2012 Jul; 430():82-7. PubMed ID: 22634553
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Factors influencing degradation of trichloroethylene by sulfide-modified nanoscale zero-valent iron in aqueous solution.
    Dong H; Zhang C; Deng J; Jiang Z; Zhang L; Cheng Y; Hou K; Tang L; Zeng G
    Water Res; 2018 May; 135():1-10. PubMed ID: 29438739
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Abiotic reductive dechlorination of chlorinated ethylenes by iron-bearing soil minerals. 2. Green rust.
    Lee W; Batchelor B
    Environ Sci Technol; 2002 Dec; 36(24):5348-54. PubMed ID: 12521160
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The relative contributions of abiotic and microbial processes to the transformation of tetrachloroethylene and trichloroethylene in anaerobic microcosms.
    Dong Y; Liang X; Krumholz LR; Philp RP; Butler EC
    Environ Sci Technol; 2009 Feb; 43(3):690-7. PubMed ID: 19245003
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of ferrous ions on the reductive dechlorination of trichloroethylene by zero-valent iron.
    Liu CC; Tseng DH; Wang CY
    J Hazard Mater; 2006 Aug; 136(3):706-13. PubMed ID: 16504392
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic and isotope analyses of tetrachloroethylene and trichloroethylene degradation by model Fe(II)-bearing minerals.
    Liang X; Philp RP; Butler EC
    Chemosphere; 2009 Mar; 75(1):63-9. PubMed ID: 19111888
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synergistic effect of copper ion on the reductive dechlorination of carbon tetrachloride by surface-bound Fe(II) associated with goethite.
    Maithreepala RA; Doong RA
    Environ Sci Technol; 2004 Jan; 38(1):260-8. PubMed ID: 14740745
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Influence of the interaction between iron oxide and electron donor substances on 1,1,1-trichloro- 2, 2-bis (p-chlorophenyl) ethane ( DDT) reductive dechlorination in hydragric acrisols].
    Liu CY; Xu XH; Wang Z; Yao TY
    Huan Jing Ke Xue; 2014 Nov; 35(11):4298-304. PubMed ID: 25639109
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Review of reactive kinetic models describing reductive dechlorination of chlorinated ethenes in soil and groundwater.
    Chambon JC; Bjerg PL; Scheutz C; Baelum J; Jakobsen R; Binning PJ
    Biotechnol Bioeng; 2013 Jan; 110(1):1-23. PubMed ID: 22926627
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxidation of a Dimethoxyhydroquinone by Ferrihydrite and Goethite Nanoparticles: Iron Reduction versus Surface Catalysis.
    Krumina L; Lyngsie G; Tunlid A; Persson P
    Environ Sci Technol; 2017 Aug; 51(16):9053-9061. PubMed ID: 28691796
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reductive dechlorination of trichloroethylene by combining autotrophic hydrogen-bacteria and zero-valent iron particles.
    Wang SM; Tseng SK
    Bioresour Technol; 2009 Jan; 100(1):111-7. PubMed ID: 18603424
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.