These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 24998046)

  • 1. Visible light responsive porous Lanthanum-doped Ag3PO4 photocatalyst with high photocatalytic water oxidation activity.
    Xie YP; Wang GS
    J Colloid Interface Sci; 2014 Sep; 430():1-5. PubMed ID: 24998046
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heterostructured Ag3PO4/AgBr/Ag plasmonic photocatalyst with enhanced photocatalytic activity and stability under visible light.
    Wang WS; Du H; Wang RX; Wen T; Xu AW
    Nanoscale; 2013 Apr; 5(8):3315-21. PubMed ID: 23467421
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heterostructures of Ag₃PO₄/TiO₂ mesoporous spheres with highly efficient visible light photocatalytic activity.
    Li Y; Yu L; Li N; Yan W; Li X
    J Colloid Interface Sci; 2015 Jul; 450():246-253. PubMed ID: 25823728
    [TBL] [Abstract][Full Text] [Related]  

  • 4. AgCl/Ag
    Guo J; Shi H; Huang X; Shi H; An Z
    J Colloid Interface Sci; 2018 Apr; 515():10-17. PubMed ID: 29324270
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In situ growth of Ag3PO4 on N-BiPO4 nanorod: A core-shell heterostructure for high performance photocatalyst.
    Li J; Yuan H; Zhu Z
    J Colloid Interface Sci; 2016 Jan; 462():382-8. PubMed ID: 26484604
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly efficient heterojunction photocatalyst based on nanoporous g-C3N4 sheets modified by Ag3PO4 nanoparticles: synthesis and enhanced photocatalytic activity.
    Jiang D; Zhu J; Chen M; Xie J
    J Colloid Interface Sci; 2014 Mar; 417():115-20. PubMed ID: 24407666
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly efficient water splitting into H2 and O2 over lanthanum-doped NaTaO3 photocatalysts with high crystallinity and surface nanostructure.
    Kato H; Asakura K; Kudo A
    J Am Chem Soc; 2003 Mar; 125(10):3082-9. PubMed ID: 12617675
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Significant visible-light photocatalytic enhancement in Rhodamine B degradation of silver orthophosphate via the hybridization of N-doped graphene and poly(3-hexylthiophene).
    Zhang Y; Xie C; Gu FL; Wu H; Guo Q
    J Hazard Mater; 2016 Sep; 315():23-34. PubMed ID: 27152973
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nitrogen-doped carbon quantum dots/Ag
    Chen Q; Wang Y; Wang Y; Zhang X; Duan D; Fan C
    J Colloid Interface Sci; 2017 Apr; 491():238-245. PubMed ID: 28038396
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ag
    Guo Y; Yu W; Chen J; Wang X; Gao B; Wang G
    Ultrason Sonochem; 2017 Jan; 34():831-838. PubMed ID: 27773310
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of polyaniline on the photocatalytic degradation and stability performance of the polyaniline/silver/silver phosphate composite under visible light.
    Bu Y; Chen Z
    ACS Appl Mater Interfaces; 2014 Oct; 6(20):17589-98. PubMed ID: 25243723
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ag3PO4 nanoparticles loaded on 3D flower-like spherical MoS2: a highly efficient hierarchical heterojunction photocatalyst.
    Wang L; Chai Y; Ren J; Ding J; Liu Q; Dai WL
    Dalton Trans; 2015 Sep; 44(33):14625-34. PubMed ID: 26212501
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation of Ag3PO4/Ni3(PO4)2 hetero-composites by cation exchange reaction and its enhancing photocatalytic performance.
    Wang Y; Wang K; Wang X
    J Colloid Interface Sci; 2016 Mar; 466():178-85. PubMed ID: 26722799
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced photocatalytic activity of La-doped AgNbO3 under visible light irradiation.
    Li G; Kako T; Wang D; Zou Z; Ye J
    Dalton Trans; 2009 Apr; (13):2423-7. PubMed ID: 19290377
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synergistic effect of CoPi-hole and Cu(ii)-electron cocatalysts for enhanced photocatalytic activity and photoinduced stability of Ag
    Wang P; Xu S; Xia Y; Wang X; Yu H; Yu J
    Phys Chem Chem Phys; 2017 Apr; 19(16):10309-10316. PubMed ID: 28397913
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Multiple Promotion Effects of Ammonium Phosphate-Modified Ag
    Liu Q; Li N; Qiao Z; Li W; Wang L; Zhu S; Jing Z; Yan T
    Front Chem; 2019; 7():866. PubMed ID: 31921784
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Z-scheme Ag
    Liu G; Zhao X; Zhang J; Liu S; Sha J
    Dalton Trans; 2018 May; 47(17):6225-6232. PubMed ID: 29682642
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of RuO
    Dhanabal R; Velmathi S; Bose AC
    J Hazard Mater; 2018 Feb; 344():865-874. PubMed ID: 29190584
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The enhancement mechanism of ultra-active Ag
    Ma Y; Li J; Jin Y; Gao K; Cai H; Ou G
    Chemosphere; 2021 Dec; 285():131440. PubMed ID: 34252812
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomimetic synthesis of Ag
    Liu Y; Wu Q; Zhao Y
    Dalton Trans; 2017 May; 46(19):6425-6432. PubMed ID: 28470270
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.