These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
210 related articles for article (PubMed ID: 24998065)
1. Formation, thermodynamic properties, microstructures and antimicrobial activity of mixed cationic/non-ionic surfactant microemulsions with isopropyl myristate as oil. Bardhan S; Kundu K; Das S; Poddar M; Saha SK; Paul BK J Colloid Interface Sci; 2014 Sep; 430():129-39. PubMed ID: 24998065 [TBL] [Abstract][Full Text] [Related]
2. Physicochemical investigation of mixed surfactant microemulsions: water solubilization, thermodynamic properties, microstructure, and dynamics. Bardhan S; Kundu K; Saha SK; Paul BK J Colloid Interface Sci; 2013 Dec; 411():152-61. PubMed ID: 24064004 [TBL] [Abstract][Full Text] [Related]
3. Physicochemical studies of mixed surfactant microemulsions with isopropyl myristate as oil. Bardhan S; Kundu K; Saha SK; Paul BK J Colloid Interface Sci; 2013 Jul; 402():180-9. PubMed ID: 23664388 [TBL] [Abstract][Full Text] [Related]
4. Interfacial composition, thermodynamic properties, and structural parameters of water-in-oil microemulsions stabilized by 1-pentanol and mixed surfactants. Kundu K; Guin G; Paul BK J Colloid Interface Sci; 2012 Nov; 385(1):96-110. PubMed ID: 22884225 [TBL] [Abstract][Full Text] [Related]
5. Dilution method study on the interfacial composition, thermodynamic properties and structural parameters of W/O microemulsions stabilized by 1-pentanol and surfactants in absence and presence of sodium chloride. Paul BK; Nandy D J Colloid Interface Sci; 2007 Dec; 316(2):751-61. PubMed ID: 17904572 [TBL] [Abstract][Full Text] [Related]
6. Antimicrobial activity of a food-grade fully dilutable microemulsion against Escherichia coli and Staphylococcus aureus. Zhang H; Shen Y; Weng P; Zhao G; Feng F; Zheng X Int J Food Microbiol; 2009 Nov; 135(3):211-5. PubMed ID: 19717202 [TBL] [Abstract][Full Text] [Related]
7. Phase behavior, microstructural transition, antimicrobial and antioxidant activities of a water-dilutable thymol microemulsion. Deng L; Taxipalati M; Sun P; Que F; Zhang H Colloids Surf B Biointerfaces; 2015 Dec; 136():859-66. PubMed ID: 26546890 [TBL] [Abstract][Full Text] [Related]
8. Investigation of surfactant/cosurfactant synergism impact on ibuprofen solubilization capacity and drug release characteristics of nonionic microemulsions. Djekic L; Primorac M; Filipic S; Agbaba D Int J Pharm; 2012 Aug; 433(1-2):25-33. PubMed ID: 22579578 [TBL] [Abstract][Full Text] [Related]
9. Phase behavior, interfacial composition and thermodynamic properties of mixed surfactant (CTAB and Brij-58) derived w/o microemulsions with 1-butanol and 1-pentanol as cosurfactants and n-heptane and n-decane as oils. Mitra RK; Paul BK; Moulik SP J Colloid Interface Sci; 2006 Aug; 300(2):755-64. PubMed ID: 16677663 [TBL] [Abstract][Full Text] [Related]
10. A step toward the development of high-temperature stable ionic liquid-in-oil microemulsions containing double-chain anionic surface active ionic liquid. Rao VG; Banerjee C; Ghosh S; Mandal S; Kuchlyan J; Sarkar N J Phys Chem B; 2013 Jun; 117(24):7472-80. PubMed ID: 23697660 [TBL] [Abstract][Full Text] [Related]
11. The influence of cosurfactants and oils on the formation of pharmaceutical microemulsions based on PEG-8 caprylic/capric glycerides. Djekic L; Primorac M Int J Pharm; 2008 Mar; 352(1-2):231-9. PubMed ID: 18068919 [TBL] [Abstract][Full Text] [Related]
12. Physicochemical behaviors of cationic gemini surfactant (14-4-14) based microheterogeneous assemblies. Das S; Mukherjee I; Paul BK; Ghosh S Langmuir; 2014 Oct; 30(42):12483-93. PubMed ID: 25241843 [TBL] [Abstract][Full Text] [Related]
13. Investigation of microemulsion microstructures and their relationship to transdermal permeation of model drugs: ketoprofen, lidocaine, and caffeine. Zhang J; Michniak-Kohn B Int J Pharm; 2011 Dec; 421(1):34-44. PubMed ID: 21959104 [TBL] [Abstract][Full Text] [Related]
14. Characterisation of microemulsions containing orange oil with water and propylene glycol as hydrophilic components. Yotsawimonwat S; Okonoki S; Krauel K; Sirithunyalug J; Sirithunyalug B; Rades T Pharmazie; 2006 Nov; 61(11):920-6. PubMed ID: 17152984 [TBL] [Abstract][Full Text] [Related]
15. Study of nano-emulsion formation by dilution of microemulsions. Solè I; Solans C; Maestro A; González C; Gutiérrez JM J Colloid Interface Sci; 2012 Jun; 376(1):133-9. PubMed ID: 22480397 [TBL] [Abstract][Full Text] [Related]
16. Studies on the kinetics of killing and the proposed mechanism of action of microemulsions against fungi. Al-Adham IS; Ashour H; Al-Kaissi E; Khalil E; Kierans M; Collier PJ Int J Pharm; 2013 Sep; 454(1):226-32. PubMed ID: 23830945 [TBL] [Abstract][Full Text] [Related]
17. Ionic liquid based microemulsion with pharmaceutically accepted components: Formulation and potential applications. Moniruzzaman M; Kamiya N; Goto M J Colloid Interface Sci; 2010 Dec; 352(1):136-42. PubMed ID: 20825949 [TBL] [Abstract][Full Text] [Related]
18. Probing the relationship between interfacial concentrations and lipase activity in cationic W/O microemulsions: a quantitative study by chemical trapping. Dasgupta A; Das D; Das PK Langmuir; 2007 Apr; 23(8):4137-43. PubMed ID: 17348698 [TBL] [Abstract][Full Text] [Related]
19. Tailoring of horseradish peroxidase activity in cationic water-in-oil microemulsions. Roy S; Dasgupta A; Das PK Langmuir; 2006 May; 22(10):4567-73. PubMed ID: 16649765 [TBL] [Abstract][Full Text] [Related]
20. Dynamical and rheological properties of fluorinated surfactant films adsorbed at the pressurized CO2-H2O interface. Tewes F; Krafft MP; Boury F Langmuir; 2011 Jul; 27(13):8144-52. PubMed ID: 21630699 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]