BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 24998180)

  • 1. Permeability of subcutaneous tissues surrounding long-term implants to oxygen.
    Kumosa LS; Routh TL; Lin JT; Lucisano JY; Gough DA
    Biomaterials; 2014 Sep; 35(29):8287-96. PubMed ID: 24998180
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biocompatibility of an enzyme-based, electrochemical glucose sensor for short-term implantation in the subcutis.
    Kvist PH; Iburg T; Aalbaek B; Gerstenberg M; Schoier C; Kaastrup P; Buch-Rasmussen T; Hasselager E; Jensen HE
    Diabetes Technol Ther; 2006 Oct; 8(5):546-59. PubMed ID: 17037969
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glucose Monitoring in Individuals With Diabetes Using a Long-Term Implanted Sensor/Telemetry System and Model.
    Lucisano JY; Routh TL; Lin JT; Gough DA
    IEEE Trans Biomed Eng; 2017 Sep; 64(9):1982-1993. PubMed ID: 27775510
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of diabetes on the foreign body response to nitric oxide-releasing implants.
    Soto RJ; Merricks EP; Bellinger DA; Nichols TC; Schoenfisch MH
    Biomaterials; 2018 Mar; 157():76-85. PubMed ID: 29245053
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparing the Host Reaction to CorMatrix and Different Cardiac Patch Materials Implanted Subcutaneously in Growing Pigs.
    Mosala Nezhad Z; Poncelet A; Fervaille C; Gianello P
    Thorac Cardiovasc Surg; 2019 Jan; 67(1):44-49. PubMed ID: 29078233
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human Subcutaneous Tissue Response to Glucose Sensors: Macrophages Accumulation Impact on Sensor Accuracy.
    Rigla M; Pons B; Rebasa P; Luna A; Pozo FJ; Caixàs A; Villaplana M; Subías D; Bella MR; Combalia N
    Diabetes Technol Ther; 2018 Apr; 20(4):296-302. PubMed ID: 29470128
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Capsule thickness correlates with vascular density and blood flow within foreign-body capsules surrounding surgically implanted subcutaneous devices.
    Bartoli CR; Nadar MM; Godleski JJ
    Artif Organs; 2010 Oct; 34(10):857-61. PubMed ID: 20618226
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Function of an implanted tissue glucose sensor for more than 1 year in animals.
    Gough DA; Kumosa LS; Routh TL; Lin JT; Lucisano JY
    Sci Transl Med; 2010 Jul; 2(42):42ra53. PubMed ID: 20668297
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of nitric oxide surface flux on the foreign body response to subcutaneous implants.
    Nichols SP; Koh A; Brown NL; Rose MB; Sun B; Slomberg DL; Riccio DA; Klitzman B; Schoenfisch MH
    Biomaterials; 2012 Sep; 33(27):6305-12. PubMed ID: 22748919
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biocompatibility of electrochemical glucose sensors implanted in the subcutis of pigs.
    Kvist PH; Iburg T; Bielecki M; Gerstenberg M; Buch-Rasmussen T; Hasselager E; Jensen HE
    Diabetes Technol Ther; 2006 Aug; 8(4):463-75. PubMed ID: 16939371
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of alpha lipoic acid co-administration on structural and immunohistochemical changes in subcutaneous tissue of anterior abdominal wall of adult male albino rat in response to polypropylene mesh implantation.
    Mazroa SA; Asker SA; Asker W; Abd Ellatif M
    Int J Exp Pathol; 2015 Jun; 96(3):172-82. PubMed ID: 25891652
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of subcutaneous glucose sensor implantation on skin mRNA expression in pigs.
    Kvist PH; Iburg T; Dawson HD; Jensen HE
    Diabetes Technol Ther; 2010 Oct; 12(10):791-9. PubMed ID: 20818977
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surgical Results and Microscopic Analysis of the Tissue Reaction following Implantation and Explantation of an Intraocular Implant for Epiretinal Stimulation in Minipigs.
    Menzel-Severing J; Sellhaus B; Laube T; Brockmann C; Bornfeld N; Walter P; Roessler G
    Ophthalmic Res; 2011 Oct; 46(4):192-8. PubMed ID: 21464576
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Foreign body response to subcutaneous biomaterial implants in a mast cell-deficient Kit(w-Sh) murine model.
    Avula MN; Rao AN; McGill LD; Grainger DW; Solzbacher F
    Acta Biomater; 2014 May; 10(5):1856-63. PubMed ID: 24406200
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Variants of the tissue-sensor array window chamber.
    Makale MT; Chen PC; Gough DA
    Am J Physiol Heart Circ Physiol; 2005 Jul; 289(1):H57-65. PubMed ID: 15734882
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physiological preparation for studying the response of subcutaneously implanted glucose and oxygen sensors.
    Ertefai S; Gough DA
    J Biomed Eng; 1989 Sep; 11(5):362-8. PubMed ID: 2677523
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mass transfer and gas-phase calibration of implanted oxygen sensors.
    Makale MT; Jablecki MC; Gough DA
    Anal Chem; 2004 Mar; 76(6):1773-7. PubMed ID: 15018582
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioartificial endocrine pancreas: foreign-body reaction and effectiveness of diffusional transport of insulin and oxygen after long-term implantation of hollow fibers into rats.
    Bodziony J
    Res Exp Med (Berl); 1992; 192(5):305-16. PubMed ID: 1439195
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Meningeal Lymphangiogenesis and Enhanced Glymphatic Activity in Mice with Chronically Implanted EEG Electrodes.
    Hauglund NL; Kusk P; Kornum BR; Nedergaard M
    J Neurosci; 2020 Mar; 40(11):2371-2380. PubMed ID: 32047056
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A strategy to passively reduce neuroinflammation surrounding devices implanted chronically in brain tissue by manipulating device surface permeability.
    Skousen JL; Bridge MJ; Tresco PA
    Biomaterials; 2015 Jan; 36():33-43. PubMed ID: 25310936
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.