These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 24998180)

  • 21. Bioluminescence imaging of glucose in tissue surrounding polyurethane and glucose sensor implants.
    Prichard HL; Schroeder T; Reichert WM; Klitzman B
    J Diabetes Sci Technol; 2010 Sep; 4(5):1055-62. PubMed ID: 20920425
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modulation of the foreign body response to implanted sensor models through device-based delivery of the tyrosine kinase inhibitor, masitinib.
    Avula MN; Rao AN; McGill LD; Grainger DW; Solzbacher F
    Biomaterials; 2013 Dec; 34(38):9737-46. PubMed ID: 24060424
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Assessment of chronically implanted subcutaneous glucose sensors in dogs: the effect of surrounding fluid masses.
    Ward WK; Troupe JE
    ASAIO J; 1999; 45(6):555-61. PubMed ID: 10593686
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effect of microgeometry, implant thickness and polyurethane chemistry on the foreign body response to subcutaneous implants.
    Ward WK; Slobodzian EP; Tiekotter KL; Wood MD
    Biomaterials; 2002 Nov; 23(21):4185-92. PubMed ID: 12194521
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Vascularizing the tissue surrounding a model biosensor: how localized is the effect of a subcutaneous infusion of vascular endothelial growth factor (VEGF)?
    Ward WK; Quinn MJ; Wood MD; Tiekotter KL; Pidikiti S; Gallagher JA
    Biosens Bioelectron; 2003 Nov; 19(3):155-63. PubMed ID: 14611750
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modeling the Physiological Factors Affecting Glucose Sensor Function in Vivo.
    Novak MT; Reichert WM
    J Diabetes Sci Technol; 2015 Jun; 9(5):993-8. PubMed ID: 26134832
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Theoretical analysis of the performance of glucose sensors with layer-by-layer assembled outer membranes.
    Croce RA; Vaddiraju S; Papadimitrakopoulos F; Jain FC
    Sensors (Basel); 2012 Oct; 12(10):13402-16. PubMed ID: 23202001
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evaluation of Continuous Lactate Monitoring Systems within a Heparinized In Vivo Porcine Model Intravenously and Subcutaneously.
    Wolf A; Renehan K; Ho KKY; Carr BD; Chen CV; Cornell MS; Ye M; Rojas-Peña A; Chen H
    Biosensors (Basel); 2018 Dec; 8(4):. PubMed ID: 30518105
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chronic response of adult rat brain tissue to implants anchored to the skull.
    Kim YT; Hitchcock RW; Bridge MJ; Tresco PA
    Biomaterials; 2004 May; 25(12):2229-37. PubMed ID: 14741588
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The foreign body response to the Utah Slant Electrode Array in the cat sciatic nerve.
    Christensen MB; Pearce SM; Ledbetter NM; Warren DJ; Clark GA; Tresco PA
    Acta Biomater; 2014 Nov; 10(11):4650-4660. PubMed ID: 25042798
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evaluation of subcutaneously-implanted glucose sensors for continuous glucose measurements in hyperglycemic pigs.
    Kvist PH; Bielecki M; Gerstenberg M; Rossmeisl C; Jensen HE; Rolin B; Hasselager E
    In Vivo; 2006; 20(2):195-203. PubMed ID: 16634519
    [TBL] [Abstract][Full Text] [Related]  

  • 32. New life for old wires: electrochemical sensor method for neural implants.
    Weltin A; Ganatra D; König K; Joseph K; Hofmann UG; Urban GA; Kieninger J
    J Neural Eng; 2019 Dec; 17(1):016007. PubMed ID: 31597122
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparison of microdialysis sampling perfusion fluid components on the foreign body reaction in rat subcutaneous tissue.
    Keeler GD; Durdik JM; Stenken JA
    Eur J Pharm Sci; 2014 Jun; 57():60-7. PubMed ID: 24239995
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Skin-inspired, open mesh electrochemical sensors for lactate and oxygen monitoring.
    Ashley BK; Brown MS; Park Y; Kuan S; Koh A
    Biosens Bioelectron; 2019 May; 132():343-351. PubMed ID: 30897541
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Foreign body response to subcutaneous implants in diabetic rats.
    Socarrás TO; Vasconcelos AC; Campos PP; Pereira NB; Souza JP; Andrade SP
    PLoS One; 2014; 9(11):e110945. PubMed ID: 25372281
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Extraction force and tissue change during removal of a tined intramuscular electrode from rat gastrocnemius.
    Bhadra N; Mortimer JT
    Ann Biomed Eng; 2006 Jun; 34(6):1042-50. PubMed ID: 16783659
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Long-term biocompatibility of a miniature stimulator implanted in feline hind limb muscles.
    Cameron T; Liinamaa TL; Loeb GE; Richmond FJ
    IEEE Trans Biomed Eng; 1998 Aug; 45(8):1024-35. PubMed ID: 9691577
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Variation in diffusion of gases through PDMS due to plasma surface treatment and storage conditions.
    Markov DA; Lillie EM; Garbett SP; McCawley LJ
    Biomed Microdevices; 2014 Feb; 16(1):91-6. PubMed ID: 24065585
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The influence of time on human breast capsule histology: smooth and textured silicone-surfaced implants.
    Wyatt LE; Sinow JD; Wollman JS; Sami DA; Miller TA
    Plast Reconstr Surg; 1998 Nov; 102(6):1922-31. PubMed ID: 9810987
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Histologic examination of decellularized porcine intestinal submucosa extracellular matrix (CorMatrix) in pediatric congenital heart surgery.
    Woo JS; Fishbein MC; Reemtsen B
    Cardiovasc Pathol; 2016; 25(1):12-7. PubMed ID: 26453090
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.