These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 24998209)

  • 1. Surface-immobilization of molecules for detection of chemical warfare agents.
    Bhowmick I; Neelam
    Analyst; 2014 Sep; 139(17):4154-68. PubMed ID: 24998209
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemical functionalization of electrodes for detection of gaseous nerve agents with carbon nanotube field-effect transistors.
    Delalande M; Clavaguera S; Toure M; Carella A; Lenfant S; Deresmes D; Vuillaume D; Simonato JP
    Chem Commun (Camb); 2011 Jun; 47(21):6048-50. PubMed ID: 21528147
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface-enhanced Raman spectroscopy of half-mustard agent.
    Stuart DA; Biggs KB; Van Duyne RP
    Analyst; 2006 Apr; 131(4):568-72. PubMed ID: 16568174
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of electrochemical method for the determination of olaquindox using multi-walled carbon nanotubes modified glassy carbon electrode.
    Xu T; Zhang L; Yang J; Li N; Yang L; Jiang X
    Talanta; 2013 May; 109():185-90. PubMed ID: 23618158
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functionalized gold nanoparticle supported sensory mechanisms applied in detection of chemical and biological threat agents: a review.
    Upadhyayula VK
    Anal Chim Acta; 2012 Feb; 715():1-18. PubMed ID: 22244163
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hole doping and surface functionalization of single-walled carbon nanotube chemiresistive sensors for ultrasensitive and highly selective organophosphor vapor detection.
    Wei L; Shi D; Ye P; Dai Z; Chen H; Chen C; Wang J; Zhang L; Xu D; Wang Z; Zhang Y
    Nanotechnology; 2011 Oct; 22(42):425501. PubMed ID: 21934197
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrochemical sensors for environmental monitoring: design, development and applications.
    Hanrahan G; Patil DG; Wang J
    J Environ Monit; 2004 Aug; 6(8):657-64. PubMed ID: 15292947
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbon nanotubes-based label-free affinity sensors for environmental monitoring.
    Sarkar T; Gao Y; Mulchandani A
    Appl Biochem Biotechnol; 2013 Jul; 170(5):1011-25. PubMed ID: 23653139
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Update 1 of: Destruction and Detection of Chemical Warfare Agents.
    Jang YJ; Kim K; Tsay OG; Atwood DA; Churchill DG
    Chem Rev; 2015 Dec; 115(24):PR1-76. PubMed ID: 26654832
    [No Abstract]   [Full Text] [Related]  

  • 10. Arrays of microelectrodes: technologies for environmental investigations.
    Davis F; Higson SP
    Environ Sci Process Impacts; 2013 Aug; 15(8):1477-89. PubMed ID: 23811985
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of the efficacy of a portable LIBS system for detection of CWA on surfaces.
    L'Hermite D; Vors E; Vercouter T; Moutiers G
    Environ Sci Pollut Res Int; 2016 May; 23(9):8219-26. PubMed ID: 26906000
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent biosensing developments in environmental security.
    Wanekaya AK; Chen W; Mulchandani A
    J Environ Monit; 2008 Jun; 10(6):703-12. PubMed ID: 18528536
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical vapor discrimination using a compact and low-power array of piezoresistive microcantilevers.
    Loui A; Ratto TV; Wilson TS; McCall SK; Mukerjee EV; Love AH; Hart BR
    Analyst; 2008 May; 133(5):608-15. PubMed ID: 18427681
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensors to Detect Sarin Simulant.
    Bielecki M; Witkiewicz Z; Rogala P
    Crit Rev Anal Chem; 2021; 51(4):299-311. PubMed ID: 32026717
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrochemical detection of ultratrace nitroaromatic explosives using ordered mesoporous carbon.
    Zang J; Guo CX; Hu F; Yu L; Li CM
    Anal Chim Acta; 2011 Jan; 683(2):187-91. PubMed ID: 21167969
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Behavior of sulfur mustard in sand, concrete, and asphalt matrices: Evaporation, degradation, and decontamination.
    Jung H; Choi S
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2017 Oct; 52(12):1121-1125. PubMed ID: 28738169
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multifunctional ultra-high vacuum apparatus for studies of the interactions of chemical warfare agents on complex surfaces.
    Wilmsmeyer AR; Gordon WO; Davis ED; Mantooth BA; Lalain TA; Morris JR
    Rev Sci Instrum; 2014 Jan; 85(1):014101. PubMed ID: 24517783
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Passive standoff detection of chemical warfare agents on surfaces.
    Thériault JM; Puckrin E; Hancock J; Lecavalier P; Lepage CJ; Jensen JO
    Appl Opt; 2004 Nov; 43(31):5870-85. PubMed ID: 15540446
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of portable mass spectrometer with electron cyclotron resonance ion source for detection of chemical warfare agents in air.
    Urabe T; Takahashi K; Kitagawa M; Sato T; Kondo T; Enomoto S; Kidera M; Seto Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2014; 120():437-44. PubMed ID: 24211802
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mass spectrometry in identification of ecotoxicants including chemical and biological warfare agents.
    Lebedev AT
    Toxicol Appl Pharmacol; 2005 Sep; 207(2 Suppl):451-8. PubMed ID: 16024060
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.