BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 24998314)

  • 1. Fast and sensitive detection of mycotoxins in wheat using microfluidics based Real-time Electrochemical Profiling.
    Olcer Z; Esen E; Muhammad T; Ersoy A; Budak S; Uludag Y
    Biosens Bioelectron; 2014 Dec; 62():163-9. PubMed ID: 24998314
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrochemical nanoprobe-based immunosensor for deoxynivalenol mycotoxin residues analysis in wheat samples.
    Valera E; García-Febrero R; Elliott CT; Sánchez-Baeza F; Marco MP
    Anal Bioanal Chem; 2019 Mar; 411(9):1915-1926. PubMed ID: 30610251
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a recombinant Fab-fragment based electrochemical immunosensor for deoxynivalenol detection in food samples.
    Romanazzo D; Ricci F; Volpe G; Elliott CT; Vesco S; Kroeger K; Moscone D; Stroka J; Van Egmond H; Vehniäinen M; Palleschi G
    Biosens Bioelectron; 2010 Aug; 25(12):2615-21. PubMed ID: 20466534
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Occurrence of mycotoxins in spelt and common wheat grain and their products.
    Mankevičienė A; Jablonskytė-Raščė D; Maikštėnienė S
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2014; 31(1):132-8. PubMed ID: 24199659
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a liquid chromatography/time-of-flight mass spectrometric method for the simultaneous determination of trichothecenes, zearalenone and aflatoxins in foodstuffs.
    Tanaka H; Takino M; Sugita-Konishi Y; Tanaka T
    Rapid Commun Mass Spectrom; 2006; 20(9):1422-8. PubMed ID: 16586478
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An electrochemical competitive biosensor for ochratoxin A based on a DNA biotinylated aptamer.
    Bonel L; Vidal JC; Duato P; Castillo JR
    Biosens Bioelectron; 2011 Mar; 26(7):3254-9. PubMed ID: 21256729
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lab-on-a-chip based biosensor for the real-time detection of aflatoxin.
    Uludag Y; Esen E; Kokturk G; Ozer H; Muhammad T; Olcer Z; Basegmez HIO; Simsek S; Barut S; Gok MY; Akgun M; Altintas Z
    Talanta; 2016 Nov; 160():381-388. PubMed ID: 27591628
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mycotoxins in durum wheat grain: hygienic-health quality of sicilian production.
    Gallo G; Lo Bianco M; Bognanni R; Saimbene G
    J Food Sci; 2008 May; 73(4):T42-7. PubMed ID: 18460144
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A point-of-use microfluidic device with integrated photodetector array for immunoassay multiplexing: Detection of a panel of mycotoxins in multiple samples.
    Soares RRG; Santos DR; Chu V; Azevedo AM; Aires-Barros MR; Conde JP
    Biosens Bioelectron; 2017 Jan; 87():823-831. PubMed ID: 27657844
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent advances in mycotoxins detection.
    Chauhan R; Singh J; Sachdev T; Basu T; Malhotra BD
    Biosens Bioelectron; 2016 Jul; 81():532-545. PubMed ID: 27019032
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of Mass Sensitive Micro-Array biosensors for their feasibility in multiplex detection of low molecular weight toxins using mycotoxins as model compounds.
    Nolan P; Auer S; Spehar A; Oplatowska-Stachowiak M; Campbell K
    Talanta; 2021 Jan; 222():121521. PubMed ID: 33167231
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid detection of four mycotoxins in corn using a microfluidics and microarray-based immunoassay system.
    Chen Y; Meng X; Zhu Y; Shen M; Lu Y; Cheng J; Xu Y
    Talanta; 2018 Aug; 186():299-305. PubMed ID: 29784365
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiplexed detection of mycotoxins in foods with a regenerable array.
    Ngundi MM; Shriver-Lake LC; Moore MH; Ligler FS; Taitt CR
    J Food Prot; 2006 Dec; 69(12):3047-51. PubMed ID: 17186679
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sampling of wheat dust and subsequent analysis of deoxynivalenol by LC-MS/MS.
    Sanders M; De Boevre M; Dumoulin F; Detavernier C; Martens F; Van Poucke C; Eeckhout M; De Saeger S
    J Agric Food Chem; 2013 Jul; 61(26):6259-64. PubMed ID: 23782015
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development and application of analytical methods for the determination of mycotoxins in organic and conventional wheat.
    Pussemier L; Piérard JY; Anselme M; Tangni EK; Motte JC; Larondelle Y
    Food Addit Contam; 2006 Nov; 23(11):1208-18. PubMed ID: 17071524
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection of deoxynivalenol based on a single-chain fragment variable of the antideoxynivalenol antibody.
    Wang SH; Du XY; Huang YM; Lin DS; Hart PL; Wang ZH
    FEMS Microbiol Lett; 2007 Jul; 272(2):214-9. PubMed ID: 17521405
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lab-On-a-Chip for carbon nanotubes based immunoassay detection of Staphylococcal Enterotoxin B (SEB).
    Yang M; Sun S; Kostov Y; Rasooly A
    Lab Chip; 2010 Apr; 10(8):1011-7. PubMed ID: 20358108
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Masked mycotoxins: determination of a deoxynivalenol glucoside in artificially and naturally contaminated wheat by liquid chromatography-tandem mass spectrometry.
    Berthiller F; Dall'Asta C; Schuhmacher R; Lemmens M; Adam G; Krska R
    J Agric Food Chem; 2005 May; 53(9):3421-5. PubMed ID: 15853382
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfluidic chips for immunoassays.
    Han KN; Li CA; Seong GH
    Annu Rev Anal Chem (Palo Alto Calif); 2013; 6():119-41. PubMed ID: 23495732
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sensitive detection of Ochratoxin A in food and drinks using metal-enhanced fluorescence.
    Todescato F; Antognoli A; Meneghello A; Cretaio E; Signorini R; Bozio R
    Biosens Bioelectron; 2014 Jul; 57():125-32. PubMed ID: 24583316
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.